

一种基于LSTMPP的齿轮剩余寿命的预测方法.pdf
增梅****主啊
亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于LSTMPP的齿轮剩余寿命的预测方法.pdf
本发明涉及一种基于LSTMPP的齿轮剩余寿命的预测方法,属于大数据和智能制造领域。该方法首先对采集的齿轮震动信号的高维特征进行简化和融合;然后将降维后的融合特征信息用于偏心长短期记忆网络LSTMPP的多步预测,针对不同特征信息所包含的信息量不同的特点,采用注意力机制方法对融合特征数据进行偏心处理;最后,根据偏心处理结果,放大输入数据和递归数据的权重,对融合特征数据进行自动和不同程度的处理。本发明能够在降低计算量的同时提高齿轮剩余寿命的预测速度与精度。
一种基于MMALSTM的齿轮剩余寿命的预测方法.pdf
本发明涉及一种基于MMALSTM的齿轮剩余寿命的预测方法,属于大数据和智能制造领域。该方法首先对采集的齿轮振动信号的高维特征进行简化和融合;然后将降维后的融合特征信息用于MMALSTM的多步预测,针对不同特征信息所包含的信息量不同的特点,采用MMA对融合特征数据进行宏微观处理;最后,根据MMA的结果,放大输入数据和递归数据的权重,对融合特征数据进行自动、不同程度的处理。本发明能够在降低计算量的同时提高齿轮剩余寿命的预测速度与精度。
一种齿轮的实时剩余寿命预测方法.pdf
一种齿轮的实时剩余预测方法,属于机械可靠性技术领域,特征是实施步骤如下:1、利用传感器对动力齿轮退化实时监测;2、对齿轮疲劳状态进行特征提取,对齿轮磨损退化性能进行衰退评估;3、建立可变参数的齿轮退化状态空间模型;4、对齿轮退化过程中的突变状态点进行检测;5、根据监测到的突变点信息修正预测模型,重新进行状态评估;6、根据齿轮状态估计及齿轮故障阈值进行齿轮剩余寿命预测。优点是可有效的预测齿轮退化状态及实时剩余寿命的准确度,为齿轮预防性维修提供依据。
一种基于SAE和ON-LSTM的齿轮剩余寿命的预测方法.pdf
本发明涉及一种基于SAE和ON‑LSTM的齿轮剩余寿命的预测方法,属于大数据和智能制造领域。该方法利用SAE提取齿轮健康指标,并用新型的ON‑LSTM神经网络来预测齿轮剩余寿命,ON‑LSTM中通过层级划分器来划分输入数据及历史数据的层级结构。将主遗忘门与主输入门的输出向量中最大元素所在的位置定义为层级位置,从而使递归神经网络分层级更新。本发明通过SAE特征提取和ON‑LSTM神经网络来预测的齿轮剩余寿命,大大降低了网络计算量,减少计算时间,且提高了预测速度以及精确度。
基于长短期记忆网络的齿轮剩余寿命预测方法.pdf
本发明基于长短期记忆网络的齿轮剩余寿命预测方法属于大数据和智能制造领域,解决了现有RNN算法无法解决长时依赖和循环神经网络容易出现梯度爆炸或是梯度消散等现象的问题,采用算法的具体步骤如下:1、利用传感器对动力齿轮退化实时监测;2、对齿轮疲劳状态进行特征提取,对齿轮磨损退化性能进行衰退评估;3、建立基于LSTM的齿轮弯曲疲劳的实时监测数据预测模型;4、基于LSTM预测模型的参数优选;5、根据齿轮状态估计及已知的齿轮故障阈值进行齿轮剩余寿命预测,本发明的优点是可有效的预测齿轮退化状态及实时剩余寿命的准确度,为