预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

多元回归分析 在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型: 其中:b0是回归常数;bk(k=1,2,3,…,n)是回归参数;e是随机误差。多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。分级别数值列成表2-1。预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。 预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。表2-1 年1960196119621963196519661967197619711972 y幼虫密蛾量级别卵量级别降水量级别雨日级别级别度1022411214.3121101300144030.11114169936717.51119118764675417.14745544318011.91211142222010101318063510311.8232283115124020.61217171831460418.44424548033630413.4332263 x1 x2 x3 x4 197319741975197619771978 572264198461769255 211231 28033016514064065 232141 13.242.271.87.544.70 244141 435530 223321 161923284411 223342 数据保存在“DATA6-5.SAV”文件中。1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。编辑后的数据显示如图2-1。 图2-1或者打开已存在的数据文件“DATA6-5.SAV”。2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口。 图2-2线性回归对话窗口3)设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度[y]”变量,然后点击“Dependent”栏左边的移到“Dependent”因变量显示栏里。设置自变量:将左边变量列表中的“蛾量[x1]”、“卵量[x2]”、“降水量[x3]”、“雨日[x4]”变量,选移到“Independent(S)”自变量显示栏里。设置控制变量:本例子中不使用控制变量,所以不选择任何变量。选择标签变量:选择“年份”为标签变量。选择加权变量:本例子没有加权变量,因此不作任何设置。4)回归方式本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。因此在“Method”框中选中“Enter”选项,建立全回归模型。向右拉按钮,该变量就 5)设置输出统计量单击“Statistics”按钮,将打开如图2-3所示的对话框。该对话框用于设置相关参数。其中各项的意义分别为: 图2-3“Statistics”对话框①“RegressionCoefficients”回归系数选项:“Estimates”输出回归系数和相关统计量。“Confidenceinterval”回归系数的95%置信区间。“Covariancematrix”回归系数的方差-协方差矩阵。本例子选择“Estimates”输出回归系数和相关统计量。②“Residuals”残差选项:“Durbin-Watson”Durbin-Watson检验。“Casewisediagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:“Outliersoutsidestandarddeviations”选择标准化残差的绝对值大于输入值的观测量;“Allcases”选择所有观测量。本例子都不选。③其它输入选项“Modelfit”输出相关系数、相关系数