预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

趋势分析和回归分析,线性、对数、多项式、盛幂、指数、趋势分析和回归分析,线性、对数、多项式、盛幂、指数、移动平均分析有何不同?移动平均分析有何不同? 1趋势分析法趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(logistic)模型、龚伯茨(gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。分析珠海市1995年以来的用电量历史数据,发现具有比较明显的二项式增长趋势,模型曲线为y=0.229565x2-914.8523x+911472.65,利用该模型曲线得到2005年到2010年的用电量水平分别为52.78亿kwh和85.08亿kwh。拟合曲线如图1所示。 2回归分析法 回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。其任务是确定预测值和影响因子之间的关系。电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、人口、气候等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。 对珠海市历年用电量和国内生产总值gdp、人口popu等数据进行分析,求得回归方程为:y=-3.9848+0.0727gdp+0.10307popu,用该模型预测2005年和2010年的用电量水平分别为47.11亿kwh和70.98亿kwh。 回归分析预测方法是要通过对历史数据的分析研究,探索经济、社会各有关因素与电力负荷的内在联系和发展变化规律,并根据对规划期内本地区经济、社会发展情况的预测来推算未来的负荷。可见该方法不仅依赖于模型的准确性,更依赖于影响因子其本身预测值的准确度。 3指数平滑法 趋势分析和回归分析都是根据时间序列的实际值建立模型,再利用模型来进行预测计算的。指数平滑法是用以往的历史数据的指数加权组合,来直接预报时间序列的将来值。 图1拟合曲线图 其中衰减因子0<α<1,体现"重近轻远",即近期数据对预测影响大,远期数据影响小的基本原则。α越大时,由近期到远期数据的加权系数由大变小就越快,是强调新近数据的作用。例如当α=0.9时,各加权系数分别为0.9,0.09,0.009等。在极端情形下,α=1,则以往数据对预报没有任何影响。 对于电力系统负荷预测,重要的是曲线越接近目前时刻,就应当阶?确,而对于过去很久的数据,不必要作很精确的拟合。类似惯性作用。 从对珠海市的实例计算可以看出,预测效果比较好。实例计算表明该方法能较好地模拟珠海市的实际并进行预测。但其不宜用于过长时期的预测。 4单耗法单耗法是根据第一、二、三产业每单位用电量创造的经济价值,从预测经济指标推算用电需求量,加上居民生活用电量,构成全社会用电 量。预测时,通过对过去的单位产值耗电量进行统计分析,并结合产业结构调整,找出一定的规律,预测规划期的一、二、三产业的综合单耗,然后按国民经济和社会发展规划的指标,按单耗进行预测。 单耗法需要做大量细致的统计、分析工作,近期预测效果较佳。但在市场经济条件下,未来的产业单耗和经济发展指标都具有不确定性,对于中远期预测的准确性难以确定。 5灰色模型法灰色系统理论是反模糊控制的观点和方法延伸到复杂的大系统中,将自动控制与运筹学的数学方法相结合,研究广泛存在于客观世界中具有灰色性的问题。有部分信息已知和未知的系统称为灰色系统。 利用一阶灰色模型对珠海市全社会用电量进行了预测分析。2005年全社会用电量预测其结果应该是令人满意的。通过对原始数据的不同处理方法形成6种方案,预测2005年全社会用电量为50亿kwh左右,与其它常用方法预测的结果相当接近。6种方案中除方案3检验为这不合格外,其余全为优。但使用长数据列得到的结果与其它相比,并不占优,数据列过长,系统受干扰的成分多,不稳定因素大,反而易使模型精度降低,降低预测结果的可信度。 6负荷密度法 负荷密度一般以kw/km2表示。