预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

实验3ARMA模型建模与预测指导(271页图一图二做成报告 一、实验目的学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA模型进行估计,学会利用信息准则对估计的ARMA模型进行诊断,以及掌握利用ARMA模型进行预测。掌握在实证研究中如何运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。 二、基本概念 宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。AR模型:AR模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为: yt??1yt?1??2yt?2????pyt?p??t 式中:p为自回归模型的阶数?i(i=1,2,?,p)为模型的待定系数,?t为误差,yt为一个平稳时间序列。MA模型:MA模型也称为滑动平均模型。它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。滑动平均模型的数学公式为: yt??t??1?t?1??2?t?2????q?t?q 式中:q为模型的阶数;?j(j=1,2,?,q)为模型的待定系数;?t为误差;yt为平稳时间序列。ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为: yt??1yt?1??2yt?2????pyt?p??t??1?t?1??2?t?2????q?t?q 三、实验内容及要求 1、实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q和自回归阶数p;(3)运用经典B-J方法对某企业201个连续生产数据建立合适的ARMA(p,q)模型,并能够利用此模型进行短期预测。2、实验要求:(1)深刻理解平稳性的要求以及ARMA模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA模型;如何利用ARMA模型进行预测;(3)熟练掌握相关Eviews操作,读懂模型参数估计结果。四、实验指导 1、模型识别(1)数据录入打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfilestructuretype”栏选择“Unstructured/Undated”,在“Daterange”栏中输入数据个数201,点击ok,见图2-1,这样就建立了一个工作文件。 图2-1建立工作文件窗口点击File/Import,找到相应的Excel数据集,打开数据集,出现图2-2的窗口,在“Dataorder”选项中选择“Byobservation”即按照观察值顺序录入,第一个数据是从a2开始的,所以在“Upper-leftdatacell”中输入a2,本例只有一列数据,在“Namesforseriesornumberifnamedinfile”中输入序列的名字production或1,点击ok,则录入了数据。 图2-2(2)绘制序列时序图双击序列production,点击view/Graph/line,则出现图2-3的序列时序图,时序图看出201个连续生产的数据是平稳的,这个判断比较粗糙,需要用统计方法进一步验证。 92 88 84 80 76255075100125150175200 PRODUCTION 图2-3 (3)绘制序列相关图双击序列production,点击view/Correlogram,出现图2-4,我们对原始数据序列做相关图,因此在“Correlogramof”对话框中选择“Level”即表示对原始序列做相关,在滞后阶数中选择14(?201?),点击ok,即出现相关图2-5。?? 图2-4从相关图看出,自相关系数迅速衰减为0,说明序列平稳,但最后一列白噪声检验的Q统计量和相应的伴随概率表明序列存在相关性,因此序列为平稳非白噪声序列。我们可以对序列采用B-J方法建模研究。 图2-5(4)ADF检验序列的平稳性通过时序图和相关图判断序列是平稳的,我们通过统计检验来进一步证实这个结论,双击序列production,点击view/unitroottest,出现图2-6的对话框,我们对序列本身进行检验,序列不存在明显的趋势,所以选择对常数项,不带趋势的模型进行检验,其他采用默认设置,点击ok,出现图2-7的检验结果,表明拒绝存在一个单位根的原假设,序列平稳。 图2-6 图2-7(5)模型定阶由图2-5看出,偏自相关系数在k=3后很快趋于0即3阶截尾,尝试拟合AR(3);自相关系数在k=1处显著不为0,k=2时在2倍标准差的置信带边缘,当可以考虑拟合MA(1)或MA(2);同时可以考虑ARMA(3,1)模型等。在