一种基于多尺度迁移学习的肺结节良恶性分类方法和系统.pdf
冬易****娘子
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于多尺度迁移学习的肺结节良恶性分类方法和系统.pdf
本发明公开了一种基于多尺度迁移学习的肺结节良恶性分类方法,包括以下几个步骤:S1、对肺部CT影像中的结节进行多尺度采样,获得多尺度感兴趣区域;S2、对上述获得的多尺度感兴趣区域进行预处理,合成三通道RGB图像;S3、初步构建迁移学习网络模型;S4、使用上述合成的RGB图像训练上述初步构建的迁移学习网络模型,获得可对肺结节进行良恶性分类的模型。上述基于迁移学习的肺结节良恶性分类模型构建方法,可以充分利用肺结节内部和外部等不同尺度下的影像学特征进行良恶性判断,只需要提供结节的大致位置,不需要在分类时使用结节的
基于多尺度特征融合的肺结节良恶性分类方法.docx
基于多尺度特征融合的肺结节良恶性分类方法标题:基于多尺度特征融合的肺结节良恶性分类方法摘要:随着肺结节良恶性分类在临床应用中的重要性逐渐凸显,研究人员对于肺结节分类方法的研究也逐渐增多。本论文提出了一种基于多尺度特征融合的肺结节良恶性分类方法。该方法结合了多尺度特征提取和特征融合技术,能够从多个层面对肺结节进行全方位的良恶性分类。实验证明,该方法在肺结节分类问题上取得了较好的分类效果。关键词:肺结节、良恶性分类、多尺度特征、特征融合1.引言肺结节是一种常见的肺部病变,良恶性分类对于临床诊断和治疗方案的制定
基于多模型融合方法的肺结节良恶性分类.docx
基于多模型融合方法的肺结节良恶性分类随着计算机技术的快速发展和医疗设备的普及,医疗图像处理技术逐渐应用于肺结节诊断中,以实现肺结节良恶性分类。对肺结节进行良恶性分类是肺癌早期诊断的一个重要环节,它有助于医生更好地评估肺癌患者的预后和治疗措施。传统的肺结节良恶性分类方法主要依赖于医生的处理技能和对肿瘤的认识,容易受到主观因素的影响。因此,开发一种基于计算机视觉技术的自动化分类方法,能够提高分类准确性,消除主观差异,是一个颇有前途的研究方向。在这篇文章中,我们将介绍一种基于多模型融合方法的肺结节良恶性分类方法
基于MDRA-net的肺结节良恶性分类方法.docx
基于MDRA-net的肺结节良恶性分类方法基于MDRA-net的肺结节良恶性分类方法摘要:肺结节的恶性分类是肺癌的早期诊断和治疗的重要一环。本论文提出了一种基于MDRA-net的肺结节良恶性分类方法。首先,我们使用图像分割算法将肺结节从背景中分离出来,并提取出一系列的形态学和纹理特征。然后,我们利用MDRA-net网络进行端到端的特征学习,将特征映射到一个低维空间中。最后,我们采用支持向量机(SVM)进行肺结节的良恶性分类。实验结果表明,我们提出的方法在肺结节的分类中取得了较高的准确率和召回率。1.引言肺
基于CNN模型的肺结节良恶性分类方法及装置.pdf
本发明涉及一种基于CNN模型的肺结节良恶性分类方法及装置,所述方法包括获取肺结节CT扫描图像数据并对图像数据进行预处理;将预处理后的肺结节CT扫描图像数据输入到训练好的CNN神经网络模型中,CNN神经网络模型对肺结节CT扫描图像数据依次进行多层特征提取、双线性池化以及分类处理,得到结节的不同CT扫描图像数据的分类结果;将同一结节不同CT扫描图像数据的分类结果进行融合,确定结节的良恶性。本发明通过卷积神经网络的卷积层的深层和浅层分别提取多层特征,然后经过双线性池化进行特征融合,最后将双线性池化融合后的特征输