预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2007年诺贝尔物理学奖授予了巨磁电阻(Giantmagnetoresistance,简称GMR)效应的发现者,法国物理学家阿尔贝·费尔(AlbertFert)和德国物理学家彼得·格伦贝格尔(PeterGrunberg)。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百兆,几千兆,一跃而提高几百倍,达到几百G乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W.Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如图1所示。则磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。法国科学家奈尔(L.E.F.Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。本实验介绍多层膜GMG效应的原理,并通过实验让学生了解几种GMR传感器的结构,特性,及应用领域。实验原理 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。 多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR。如图4所示。自旋阀结构的SV-GMR(SpinvalveGMR)由钉扎层,被钉扎层,中间导电层和自由层构成。其中,钉扎层使用反铁磁材料,被钉扎层使用硬铁磁材料,铁磁和反铁磁材料在交换耦合作用下形成一个偏转场,此偏转场将被钉扎层的磁化方向固定,不随外磁场改变。自由层使用软铁磁材料,它的磁化方向易于随外磁场转动。这样,很弱的外磁场就会改变自由层与被 钉扎层磁场的相对取向,对应于很高的灵敏度。制造 时,使自由层的初始磁化方向与被钉扎层垂直,磁记 录材料的磁化方向与被钉扎层的方向相同或相反(对 应于0或1),当感应到磁记录材料的磁场时,自由层 的磁化方向就向与被钉扎层磁化方向相同(低电阻) 或相反(高电阻)的方向偏转,检测出电阻的变化, 就可确定记录材料所记录的信息,硬盘所用的GMR磁 头就采用这种结构。实验仪