预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

江苏高考导数专题复习 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 【题型一】利用导数研究函数的极值、最值。 1.在区间上的最大值是 2.已知函数处有极大值,则常数c=; 3.函数有极小值,极大值 【题型二】利用导数几何意义求切线方程 1.曲线在点处的切线方程是 2.若曲线在P点处的切线平行于直线,则P点的坐标为(1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程: (1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线; 【题型三】利用导数研究函数的单调性,极值、最值 1.已知函数的切线方程为y=3x+1 (Ⅰ)若函数处有极值,求的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值; (Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围 解:(1)由 过的切线方程为: ① ② 而过 故 ∵③ 由①②③得a=2,b=-4,c=5∴ (2) 当 又在[-3,1]上最大值是13。 (3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。 依题意在[-2,1]上恒有≥0,即 ①当; ②当; ③当 综上所述,参数b的取值范围是 2.已知三次函数在和时取极值,且. (1)求函数的表达式; (2)求函数的单调区间和极值; (3)若函数在区间上的值域为,试求、应满足的条件. 解:(1), 由题意得,是的两个根,解得,. 再由可得.∴. (2), 当时,;当时,; 当时,;当时,; 当时,.∴函数在区间上是增函数; 在区间上是减函数;在区间上是增函数. 函数的极大值是,极小值是. (3)函数的图象是由的图象向右平移个单位,向上平移4个单位得到的, 所以,函数在区间上的值域为(). 而,∴,即. 于是,函数在区间上的值域为. 令得或.由的单调性知,,即. 综上所述,、应满足的条件是:,且. 3.设函数. (1)若的图象与直线相切,切点横坐标为2,且在处取极值,求实数的值; (2)当b=1时,试证明:不论a取何实数,函数总有两个不同的极值点. 解:(1) 由题意,代入上式,解之得:a=1,b=1. (2)当b=1时, 因故方程有两个不同实根. 不妨设,由可判断的符号如下: 当>0;当<0;当>0 因此是极大值点,是极小值点.,当b=1时,不论a取何实数,函数总有两个不同的极值点。 【题型四】利用导数研究函数的图象 1.如右图:是f(x)的导函数,的图象如右图所示,则f(x)的图象只可能是() (A)(B)(C)(D) 2.函数() x y o 4 -4 2 4 -4 2 -2 -2 x y o 4 -4 2 4 -4 2 -2 -2 x y y 4 o -4 2 4 -4 2 -2 -2 6 6 6 6 y x -4 -2 o 4 2 2 4 3.方程() A、0B、1C、2D、3 【题型五】利用单调性、极值、最值情况,求参数取值范围 1.设函数 (1)求函数的单调区间、极值. (2)若当时,恒有,试确定a的取值范围. 解:(1)=,令得 列表如下: x(-∞,a)a(a,3a)3a(3a,+∞)-0+0-极小极大 ∴在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减 时,,时, (2)∵,∴对称轴, ∴在[a+1,a+2]上单调递减 ∴, 依题,即 解得,又∴a的取值范围是 2.已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间 (2)若对x〔-1,2〕,不等式f(x)c2恒成立,求c的取值范围。 解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b 由f()=,f(1)=3+2a+b=0得a=,b=-2 f(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表: x(-,-)-(-,1)1(1,+)f(x)+0-0+f(x)极大值极小值所以函数f(x)的递增区间是(-,-)与(1,+),递减区间是(-,1) (2)f(x)=x3-x2-2x+c,x〔-1,2〕,当x=-时,f(x)=+c 为极大值,而f(2)=2+c,则f(2)=2+c为最大值。 要使f(x)c2(x〔-1,2〕)恒成立,只需c2f(2)=2+c,解得c-1或c2 【题型六】利用导数研究方程的根 1.已知平面向量=(,-1).=(,). (1)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥, 试求