预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

底泥中磷释放的影响因素综述 03209733姚一思 前言:水环境污染和破坏已成为当今世界上最引人注意的环境问题之一,水环境的好坏直接关系到人类的生存。我国在持续高速增长的同时,带来最大的负效应就是环境污染日益严重,江河湖海等水环境质量日趋恶化,而影响这一趋势恶化的主要原因是水体富营养化。随着富营养化水体的不断增加,水体富营养化的研究和防治日益被重视,其中过量的磷输入或水体磷的高负荷是导致河流湖泊营养化污染的重要原因。而底泥一般是指江河湖海沉积物,是各种营养盐和污染物等的主要蓄积场所,也是水域生态系统物质、能量循环的重要环节。水体受到污染后,水中污染物部分沉积或通过吸附作用在底泥中富集。在一定条件,如微生物分解作用,底泥扰动,底泥中污染物会再次释放出来,影响上覆水体。河流和湖泊内源污染物的释出,类似于非点源污染,释放面积大,释放时间、途径和释放量具有不确定性。 摘要:综述了水体底泥中磷的化学形态以及磷素释放的影响因素。化学形态有水溶性磷、铝磷、铁磷、钙磷、还原态可溶性磷、闭蓄磷、有机磷等。磷素释放的影响因素有:溶解氧、温度、pH值、磷存在的形态、微生物作用、沉积物-水界面磷的浓度梯度、盐度以及扰动。这些因素具有关联性。 关键词:底泥化学形态磷释放影响因素 1引言 P是造成湖泊水质富营养化的关键性的限制性因素之一[1]。一般认为当水体中磷浓度在0.02mg·L-1以上时,对水体的富营养化就起明显的促进作用[2]。由于近年来大量未经处理的生活污水加上农业面源氮磷的大量流失,造成河流尤其是河口富营养化趋势的逐年加剧[3~4]。大量的磷在河流等水体中沉积下来,其在适宜的条件下会重新释放进入水体,从而延续水体的富营养化过程并加剧了水体的恶化[5~8]。 沉积物-水界面是水体和沉积物之间物质交换和输送的重要途径,沉积物中的磷可能通过有机质的矿化分解作用、铁氧化物解吸作用和沉积物扰动等形式向水体释放。本文根据国内外研究富营养化水体磷释放的有关资料,综述了水体底泥中磷的化学形态以及底泥中磷释放的影响因素,对于今后研究水体中磷行为、抑制水体富营养化、改善水质具有深远的意义及参考价值。 2沉积物中磷的含量和存在形态 沉积物中磷形态通常分为水溶性磷(Psol)、铝磷(PAl)、铁磷(PFe)、钙磷(PCa)、还原态可溶性磷、闭蓄磷(Po-p)、有机磷(Porg)等7种化学形态[9]。闭蓄磷表面有一层不溶性的Fe(OH)3或Al(OH)3胶膜,包括一部分PAl和PFe,溶解度极小,含量较小,这部分磷被认为是生物不能利用的。水溶性磷和还原态可溶性磷可以通过物理溶解作用进入水体,在沉积物中的含量也不会太高,但它们是最先被释放出来的,可以很方便地被水生生物吸收利用[10]。 沉积物中P的结合态及形态之间的相互转化是控制沉积物P迁移和释放的主要因素。P释放量是由不同的迁移和转化过程决定的,控制沉积物P迁移(释放和形态转化)的环境参数的相对重要性首先取决于沉积物中P的化学形态[11]。沉积物释P量的多少并不与沉积物中的总P量成比例关系,释放进入间隙水中的P大部分是无机可溶性P[12~13]。在厌氧释放过程中,存在着有机P向无机P转化,Fe-P、Al-P向Ca-P、O-P转化的趋势,沉积物中总P浓度不断减少,就是P形态迁移转化动态平衡的结果[14]。 沉积物中释放的P与Fe-P关系密切相关,PFe是沉积物向水体释磷的主要形态。曾有人提出用沉积物中P:Fe比例作为表层沉积物P释放能力的一个参数,两者呈负相关关系[15]。 3水体磷释放的影响因素 3.1溶解氧(DO) 底层水体中溶解氧含量(DO)对沉积物P的释放起着决定性的作用,底泥首先要消耗溶解氧,降低溶解氧浓度,加速水体进入厌氧状态。厌氧状态可大大促进P在沉积物的迁移和释放,而在好氧状态下释放速率远小于厌氧释放速率[16]。两者差一个数量级[17]。 水中的溶解氧会影响沉积物的氧化还原电位,P释放对表层沉积物的氧化还原电位(Eh)的变化非常敏感。当表层沉积物Eh较高时(>350mv),Fe3+与磷酸盐结合成不溶的磷酸铁,可溶性P也被氢氧化铁胶体吸附而逐渐沉降;而当Eh较低时(<200mv),有助于Fe3+向Fe2+转化,PFe表面的Fe(OH)3保护层转化为Fe(OH)2,然后溶解释放,使Fe及被吸附的磷酸盐转变成溶解态而析出,沉积物P释放量增加[18]。 研究表明,底质所释放的磷主要为溶解性正磷酸盐,是水生生物最易吸收的形式,这样就为大型水生生物和藻类的增殖提供条件,加速其生长繁殖的速度。而这些死亡后的生物残体不能及时取走,由于微生物分解、腐烂,消耗水中的溶解氧,使水体更加缺氧,这种缺氧的环境反过来加速底质磷的释放,形成恶性循环[19]。另外浅水湖泊中高的硝酸盐浓度可使Fe处于氧化状态从而对沉积物P释放存在