预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数 http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数 1.4有理数的乘除法 1.4.1有理数的乘法(1) 【教学目标】 1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力; 2.能运用法则进行有理数乘法运算; 3.能用乘法解决简单的实际问题. 【对话探索设计】 〖探索1〗 (1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少? (2)商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少? (3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少? 〖探索2〗 (1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少? (2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少? (3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化? 〖探索3〗 (1)2×3=__;(2)-2×3=__;(3)2×(-3)=___;(4)(-2)×(-3)=____; (5)3×0=_____;(6)-3×0=_____. 〖法则归纳〗 两数相乘,同号得______,异号得_______,并把________相乘. 任何数同0相乘,都得______. 〖旧课复习〗 1.满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢?的倒数呢? 2.满足什么条件的两个数互为相反数?0.2的相反数是多少?呢? 〖探索4〗 在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数. -0.2的倒数是多少?-7.29的倒数呢?-的倒数呢? 〖练习〗 P38.练习 〖作业〗P45习题1,2,3. 【补充练习】 1.-1的倒数是1还是-1?为什么? 2.的倒数是______;0的倒数________. 3._____________的两个数互为相反数._______的两个数互为倒数. 若a+b=0,则a、b互为_____数,若ab=1,则 a、b互为_____数. 4.计算:(1)(-6)×4=______=____; (2)-=_________=_____. 5.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大?哪3个数相乘的积最小? 1.4.1有理数的乘法(2) 【教学目标】 1.巩固有理数乘法法则; 2.探索多个有理数相乘时,积的符号的确定方法. 【对话探索设计】 〖探索1〗 1.下列各式的积为什么是负的? (1)-2×3×4×5×6; (2)2×(-3)×4×(-5)×6×7×8×9×(-10). 2.下列各式的积为什么是正的? (1)(-2)×(-3)×4×5×6×7; (2)-2×3×4×5×(-6)×7×8×(-9)×(-10). 〖观察1〗 P38.观察 〖思考归纳〗 几个不是0的数相乘,积的符号与负因数的个数之间有什么关系? (见P38.思考) 与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值 〖例题学习〗 P39.例3 〖观察2〗 P39.观察 〖练习〗 P39.练习 〖作业〗 P46.7.(1),(2)(3),8,9,10,11. 〖补充练习〗 1.(1)若a=3,a与2a哪个大?若a=0呢?又若a=-3呢? (2)a与2a哪个大? (3)判断:9a一定大于2a; (4)判断:9a一定不小于2a. (5)判断:9a有可能小于2a. 2."几个数相乘,积的符号由负因数的个数决定"这句话错在哪里? 3.若a>b,则ac>bc吗?为什么?请举例说明. 4.若mn=0,那么一定有() (A)m=n=0.(B)m=0,n≠0.(C)m≠0,n=0.(D)m、n中至少有一个为0. 5.利用乘法法则完成下表,你能发现什么规律? ×3210-1-2-339630-3262213210-1-2-3 6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么? (2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么? 1.4.1有理数的乘法(3) 【教学目标】 1.熟练有理数乘法法则; 2.探索运用乘法运算律简化运算. 【对话探索设计】 〖探索1〗 你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗? 〖阅读理解〗 乘法交换律和结合律(见P40) 〖探索2〗 下列计算若按