预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

玻璃陶瓷选论 罗传峰0943014034 玻璃 一、名词解释: 非桥氧;硼氧反常性;转变温度区;桥氧;混合碱效应;硼反常性 答:非桥氧:仅与一个成网离子相键连,而不被两个成网多面体所共的氧离子则为非桥氧。 硼氧反常性:在一定范围内,碱金属氧化物提供的氧,不像在熔融石英玻璃中作为非桥氧出现于结构中,而是使硼氧三角体(B03)转变成为完全由桥氧组成的硼氧四面体,导致B203玻璃从原来两度空间的层状结构部分转变为三度空间的架状结构,从而加强了网络,使玻璃的各种物理性质,与相同条件下的硅酸盐玻璃相比,相应地向着相反的方向变化,这就是所谓硼氧反常性。 转变温度区:玻璃熔体自高温逐渐变冷却时,要通过一个过渡温度区,在此区域内玻璃从典型的液体状态,逐渐转变为具有固体各项性质的物体。这一区域称之为转变温度区。 桥氧:玻璃网络中作为两个成网多面体所共有顶角的氧离子,即起“桥梁”作用的氧离子。 混合碱效应:在二元碱玻璃中,当玻璃中碱金属氧化物的总含量不变,用一种碱金属氧化物逐步取代另一种时,玻璃的性质不是呈直线变化,而是出现明显的极值。这一效应叫做混合碱效应。 硼反常性:在钠硅酸盐玻璃中加入氧化硼时,往往在性质变化曲线中产生极大值和极小值,这现象也称为硼反常性。 二、问答题: 1、简述玻璃结构中阳离子的分类,及其在玻璃结构中的作用。 答:按元素与氧结合的单键能的大小和能否形成玻璃,分为三类:网络生成体氧化物:能单独生成玻璃,在玻璃结构中能形成各自特有的网络体系。网络外体氧化物:不能单独生成玻璃,当阳离子M电场强度较小时,断网作用,电场强度较大时积聚作用。中间体氧化物:当配位数≥6时,阳离子处于网络之外,与网络外体作用相似;当配位数为4时能参加网络起网络生成体作用。 2、简述玻璃在Tg—Tf范围内及其附近的结构变化情况。 答:在Tg—Tf范围内及其附近结构变化中可以从三个温度范围说明:1.Tf以上,粘度小,质点流动层扩散速度快,结构变化快,瞬间可达平衡。2.Tg以下,玻璃基本上已经转化为具有弹性以及脆性等特点的固态物体,此温度范围内结构变化远远落后于温度变化。3.Tg—Tf范围:粘度介于上述二者之间,质点可适当移动,构造状态趋向平衡所需时间较短。此时温度范围决定了玻璃结构状态以及结构灵敏性能。 逆性玻璃中,“逆性”的含义是什么? 答:1在结构上,一般玻璃的结构以玻璃形成物为主体,金属离子处于网络的空穴中,它仅起补网作用,逆性玻璃与通常玻璃是相逆的,即决定玻璃聚结程度的不是多面体之间的连接,而是金属离子多面体短链中氢离子的结合。2逆性玻璃在性质上也发生逆转性,一般玻璃的性质是随SiO2的减少而降低,在逆性玻璃中则相反,碱金属和碱土金属含量越多,结构越强固,而某些物理性质都向玻璃的相反方向变化。 第六章玻璃的化学稳定性 1、试述水、酸、碱、大气对玻璃的侵蚀过程。 答:1水,水对玻璃的侵蚀开始于水中的H+和玻璃中的Na+离子进行交换,通过反应间接破坏硅氧骨架,并且水分子也可以直接破坏硅氧骨架,从而造成对玻璃的侵蚀,但是产物硅酸凝胶会减低侵蚀的速度。2酸,酸对玻璃的侵蚀是通过水的作用侵蚀玻璃,产物金属氢氧化物要受到酸的中和。中和作用起着两种相反的效果,一是使玻璃和水溶液之间的离子交换反应加速进行,从而增加玻璃的失重,二是降低溶液的pH值,使硅酸凝胶Si(OH)4的溶解度减小,从而减少玻璃的失重。3碱,第一阶段:碱溶液中的阳离子吸附在玻璃表面上;第二阶段:由于阳离子有束缚其周围OH-离子的作用,当阳离子吸附在玻璃表面的同时,玻璃表面附近的OH-离子浓度相应增高,起着“攻击”和“断裂”玻璃表面硅氧键的作用;第三阶段:-Si-O-Si-骨架破坏后,产生-Si-O-群,最后变成了硅酸离子。4大气,前期相当于水溶液的侵蚀,后期由于PH值升高,相当于碱的侵蚀。 玻璃容器产生脱片的原因是什么? 答:玻璃容器产生拖片的原因如下:1玻璃表面层中,可溶性成分溶出后,由于不溶性的高硅氧残存的薄膜的脱离2原溶液存在(或从玻璃中溶出)的多价金属离子,在玻璃表面形成硅酸盐薄膜后脱离。 3、影响玻璃强度的因素有哪些? 答:化学键强度、微不均匀性、结构缺陷、微裂纹、外界条件如温度、活性介质、疲劳等。化学键对玻璃强度的影响:指键强和单位体积内键的数目对强度的影响。对硅酸盐玻璃来说,桥氧与非桥氧所形成的键,其强度是不同的,就非桥氧离子来讲,碱土金属和碱金属的键强也不一样,单位体积内的键数也即与结构网的疏密程度,结构网稀强度越低。微不均匀性对强度的影响:结构的微不均匀性降低了玻璃的强度。由于分相而行成的两相交界面上形成裂纹核,因为微相与微相之间结合力比较薄弱,并且两项成分不同,膨胀不一样,产生应力以至于强度下降。表面裂纹对强度的影响:在拉丝过程中,表面微裂纹被火焰容去,并且在冷却过程中表面