预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共53页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初中数学教案 初中数学教案[优秀]作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的初中数学教案,希望对大家有所帮助。初中数学教案1一、内容特点在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。二、设计思路整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的'概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。4.淡化二次根式的概念。初中数学教案2【教学目标】1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。【教学重点与教学难点】1、重点:多边形的内角和公式。2、难点:多边形内角和的推导。3、关键:。多边形"分割"为三角形。【教具准备】三角板、卡纸【教学过程】一、创设情景,揭示问题1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力二、探索研究学会新知1、回顾旧知,引出问题:(1)三角形的内角和等于_________。外角和等于____________(2)长方形的内角和等于_____,正方形的内角和等于__________。2、探索四边形的内角和:(1)学生思考,同学讨论交流。(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的。突破口。(3)引导学生用"分割法"探索四边形的内角和:方法一:连接一条对角线,分成2个三角形:180°+180°=360°从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。180°×4-360°=360°3、探索多边形内角和的问题,提出阶梯式的问题:你能尝试用上面的方法一求出五边形的`内角和吗?(第一二组)你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:n边形3456.。.n分成三角形的个数1234.。.n—2内角和。.。.4、及时运用,掌握新知:(1)一个八边形的内角和是_____________度(2)一个多边形的内角和是720度,这个多边形是_____边形(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________通过学生动手去用分割法求五(六)边形的内角和,从简