预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

图像变换频域世界与频域变换傅立叶变换 连续函数的傅立叶变换 1.一维连续函数的傅立叶变换 令f(x)为实变量x的连续函数,f(x)的傅立叶变换用F(u)表示,则定义式为 若已知F(u),则傅立叶反变换为 这里f(x)是实函数,它的傅立叶变换F(u)通常是复函数。F(u)的实部、虚部、振幅、能量和相位分别表示如下: 2.二维连续函数的傅立叶变换 傅立叶变换很容易推广到二维的情况。如果f(x,y)是连续和可积的,且F(u,v)是可积的,则二维傅立叶变换对为离散函数的傅立叶变换 1.一维离散函数的傅立叶变换 假定取间隔△x单位的抽样方法将一个连续函数f(x)离散化为一个序列{f(x0),f(x0+△x),…,f[x0+(N-1)△x]},如图所示。 被抽样函数的离散傅立叶变换定义式为 F(u)= 式中u=0,1,2,…,N﹣1。反变换为 f(x)= 式中x=0,1,2,…,N-1。 例如:对一维信号f(x)=[1010]进行傅立叶变换。 由 得u=0时, u=1时,u=2时, u=3时, 在N=4时,傅立叶变换以矩阵形式表示为 F(u)==Af(x)2.二维离散函数的傅立叶变换 在二维离散的情况下,傅立叶变换对表示为 F(u,v)= 式中u=0,1,2,…,M-1;v=0,1,2,…,N-1。 f(x,y)= 式中x=0,1,2,…,M-1;y=0,1,2,…,N-1。 一维和二维离散函数的傅立叶谱、相位和能量谱也分别由前面式子给出,唯一的差别在于独立变量是离散的。 一般来说,对一幅图像进行傅立叶变换运算量很大,不直接利用以上公式计算。现在都采用傅立叶变换快速算法,这样可大大减少计算量。为提高傅立叶变换算法的速度,从软件角度来讲,要不断改进算法;另一种途径为硬件化,它不但体积小且速度快。原图二维离散傅立叶变换的性质再将F(x,v)沿每一列进行一次一维傅立叶变换,就可得二维傅立叶变换F(u,v),即显然,改为先沿列后沿行分离为两个一维变换,其结果是一样的。即若f(x,y)←→F(u,v),则 4)周期性和共轭对称性5)旋转不变性傅立叶变换的旋转性8)微分性质6)分配性和比例性7)平均值9)卷积定理设