预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高考文科数学必考知识点归纳 高考文科数学必考知识点同学们总结过吗?如果还没来得及,赶快来小编这里看看。下面是由小编 小编为大家整理的“高考文科数学必考知识点归纳?”,仅供参考,欢迎大家阅读。 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。 3.常见函数的导数公式: 4.导数的四则运算法则: 5.导数的应用: (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 (2)求极值的步骤: ①求导数; ②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右 正,那么函数在这个根处取得极小值; (3)求可导函数值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。 等差数列 对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差 为公差,记为d;从第一项a1到第n项an的总和,记为Sn。 那么,通项公式为,其求法很重要,利用了“叠加原理”的思想: 将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和 n-1个d,如此便得到上述通项公式。 此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的 方法,在此,不再复述。 值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利 用这一特点可以使很多涉及Sn的数列问题迎刃而解。 等比数列 对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且 称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。 那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想: a2=a1_, a3=a2_, a4=a3_, ```````` an=an-1_, 将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到 了所述通项公式。 此外,当q=1时该数列的前n项和Tn=a1_ 当q≠1时该数列前n项的和Tn=a1_1-q^(n))/(1-q). (1)总体和样本 ①在统计学中,把研究对象的全体叫做总体. ②把每个研究对象叫做个体. ③把总体中个体的总数叫做总体容量. ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样 本.其中个体的个数称为样本容量. (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全 独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单 位之间差异程度较小和数目较少时,才采用这种方法。 (3)简单随机抽样常用的方法: ①抽签法 ②随机数表法 ③计算机模拟法 在简单随机抽样的样本容量设计中,主要考虑: ①总体变异情况; ②允许误差范围; ③概率保证程度。 (4)抽签法: ①给调查对象群体中的每一个对象编号; ②准备抽签的工具,实施抽签; ③对样本中的每一个个体进行测量或调查 (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件; (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件; (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件 A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于 给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常 数记作P(A),称为事件A的概率。 (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值 nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来 越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率 在大量重复试验的前提下可以近似地作为这个事件的概率。 1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的