基于深度强化学习的边缘计算实时比例任务卸载.docx
02****gc
亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于深度强化学习的边缘计算实时比例任务卸载.docx
基于深度强化学习的边缘计算实时比例任务卸载一、研究背景与意义随着物联网技术的快速发展,边缘计算作为一种新兴的计算模式,逐渐成为解决大数据处理和实时任务卸载的重要手段。边缘计算可以将计算任务从云端卸载到离数据源更近的设备上,降低网络延迟,提高数据传输效率,同时减少对云端资源的消耗。在实际应用中,边缘设备的计算能力有限,如何有效地利用这些设备进行实时比例任务卸载,提高边缘设备的计算性能和运行效率,成为了亟待解决的问题。深度强化学习(DeepReinforcementLearning,DRL)是一种模拟人类智能
基于深度强化学习的移动边缘计算任务卸载研究.docx
基于深度强化学习的移动边缘计算任务卸载研究基于深度强化学习的移动边缘计算任务卸载研究摘要:随着物联网和边缘计算的迅速发展,移动边缘计算作为一种有效的分布式计算模式,受到了广泛关注。移动边缘计算可以将计算任务卸载到靠近用户的边缘节点上,从而实现低延迟、高带宽的计算服务。然而,在移动边缘计算环境中,任务卸载决策面临着复杂的问题,包括多个用户设备和边缘节点的动态变化、网络带宽和计算资源的限制等。为了解决这些问题,本文提出了一种基于深度强化学习的移动边缘计算任务卸载方法。通过构建一个强化学习模型,利用深度神经网络
基于强化学习的在轨边缘计算任务卸载研究.docx
基于强化学习的在轨边缘计算任务卸载研究基于强化学习的在轨边缘计算任务卸载研究摘要:随着卫星技术的快速发展,卫星在轨计算需求不断增大,但却受限于计算能力和能源供应的限制。为解决这一问题,本文提出了一种基于强化学习的在轨边缘计算任务卸载方法。该方法利用强化学习算法为卫星设备选择合适的边缘节点执行计算任务,以降低卫星设备的计算负载,并提高计算效率。实验结果表明,本文提出的方法能够有效地分配计算任务,提升卫星的计算性能。关键词:强化学习;在轨边缘计算;任务卸载;卫星计算1.引言在现代卫星系统中,计算任务占据了重要
车辆边缘计算中基于联邦深度强化学习的任务卸载方法.pdf
本发明涉及一种车辆边缘计算中基于联邦深度强化学习的任务卸载方法,包括:1、将任务卸载问题建模为一个优化问题:找到一组最优的任务卸载策略以最小化系统中所有车辆到达任务的平均响应时间;2、构建卸载动作Q值预测模型;将每辆车看作智能体,在运行时环境中分布式使用DQN方法训练卸载动作Q值预测模型;每个智能体通过自己可观测的数据训练自己的模型;在训练过程中,结合联邦学习框架对各智能体的模型进行聚合,最终得到适用于各智能体的通用的卸载动作Q值预测模型;3、在运行时环境中,使用得到的通用模型,通过比较各卸载动作的Q值选
基于强化学习的任务迁移边缘计算卸载策略研究.docx
基于强化学习的任务迁移边缘计算卸载策略研究标题:基于强化学习的任务迁移边缘计算卸载策略研究摘要:随着边缘计算技术的发展,移动端设备面临着越来越多的计算密集型任务。为了解决这一问题,将任务迁移到边缘计算节点进行处理是一种有效的解决方案。然而,由于边缘计算节点资源有限且异构化的特点,任务的卸载策略对于系统性能至关重要。针对这一问题,本文提出了一种基于强化学习的任务迁移边缘计算卸载策略,并通过实验验证了其有效性和可行性。1.引言随着物联网和移动计算设备的普及,移动端设备面临着越来越多的计算密集型任务。边缘计算作