预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共48页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

勾股定理教案 在教学工作者实际的教学活动中,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?以下是小编为大家收集的勾股定理教案,欢迎大家分享。勾股定理教案1教学目标:1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史.2、能力目标:(1)在定理的证明中培养学生的拼图能力;(2)通过问题的解决,提高学生的运算能力3、情感目标:(1)通过自主学习的发展体验获取数学知识的感受;(2)通过有关勾股定理的历史讲解,对学生进行德育教育.教学重点:勾股定理及其应用教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育教学用具:直尺,微机教学方法:以学生为主体的讨论探索法教学过程():1、新课背景知识复习(1)三角形的三边关系(2)问题:(投影显示)直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的.获得让学生用文字语言将上述问题表述出来.勾股定理:直角三角形两直角边的平方和等于斜边的平方强调说明:(1)勾――最短的边、股――较长的直角边、弦――斜边(2)学生根据上述学习,提出自己的问题(待定)学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.3、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明4、定理与逆定理的应用例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有∴∠2=∠C又∴∴CD的长是2.4cm例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,求证:证法一:过点A作AE⊥BC于E则在Rt△ADE中,又∵AB=AC,∠BAC=∴AE=BE=CE即证法二:过点D作DE⊥AB于E,DF⊥AC于F则DE∥AC,DF∥AB又∵AB=AC,∠BAC=∴EB=ED,FD=FC=AE在Rt△EBD和Rt△FDC中在Rt△AED中,∴例3设求证:证明:构造一个边长的矩形ABCD,如图在Rt△ABE中在Rt△BCF中在Rt△DEF中在△BEF中,BE+EF>BF即例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为AD+AB+BC=3,AB+BC+CD=3图3中,在Rt△DGF中同理∴图3中的路线长为图4中,延长EF交BC于H,则FH⊥BC,BH=CH由∠FBH=及勾股定理得:EA=ED=FB=FC=∴EF=1-2FH=1-∴此图中总线路的长为4EA+EF=∵3>2.828>2.732∴图4的连接线路最短,即图4的架设方案最省电线.5、课堂小结:(1)勾股定理的内容(2)勾股定理的作用已知直角三角形的两边求第三边已知直角三角形的一边,求另两边的关系6、布置作业:a、书面作业P130#1、2、3b、上交作业P132#1、3板书设计:探究活动台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响(1)该城市是否会受到这交台风的影响?请说明理由(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?解:(1)由点A作AD⊥BC于D,则AD就为城市A距台风中心的最短距离在Rt△ABD中,∠B=,AB=220∴由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.故该城市会受到这次台风的影响.(2)由题意知,当A点距台风中心不超过60千米时,将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,该城市都会受到这次台风的影响由勾股定理得∴EF=2DE=因为这次台风中心以15千米/时的速度移动所以这次台风影响该城市的持续时间为小时(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.勾股定理教案2学习目标1、通过拼图,用面积的方法说明勾股定理的正确性.2.探索勾股定理的过