预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

RSA1978年,MIT的Rivest、Shamir、Adleman提出RSA算法 非对称加密(公开密钥加密)密码学的一次革命,定义:KA≠KB,KA、E和D公开 特点:基于数论原理(大数分解难题)是目前应用最广泛的公钥加密算法属于块加密算法 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler'stotientfunction、φ函数、欧拉商数等。 RSA算法原理 l定义:RSA加密算法 确定密钥: 1.找到两个大质数,p,q 2.Letn=pq 3.letm=(p-1)(q-1);Chooseeanddsuchthatde=1(%m). 4.Publishnandeaspublickey.Keepdandnassecretkey. 加密: C=M^e(%n) 解密: M=(C^d)%n 其中C=M^e(%n)为C%n=(M^e)%n 存在的主要问题是大数计算和大数存储的问题。 什么是RSA RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。 RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n至少也要600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(SecureElectronicTransaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。 这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:RonRivest,AdiShamir和LeonardAdleman。 RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。 RSA的算法涉及三个参数,n、e1、e2。 其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。 e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。 (n及e1),(n及e2)就是密钥对。 RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1modn;B=A^e2modn; e1和e2可以互换使用,即: A=B^e2modn;B=A^e1modn; 一、RSA的安全性 RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前,RSA的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。 二、RSA的速度 由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。 三、RSA的选择密文攻击 RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构: (XM)^d=X^d*M^dmodn 前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-WayHashFunction对文档作HASH处理,或 四、RSA的公共模数攻击 若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则: C1