预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

遗传算法及其MATLAB实现 主要参考书: MATLAB6.5辅助优化计算与设计飞思科技产品研发中心编著 电子工业出版社2003.1 遗传算法及其应用陈国良等编著 人民邮电出版社1996.6 主要内容: 遗传算法简介 遗传算法的MATLAB实现 应用举例 在工业工程中,许多最优化问题性质十分复杂,很难用 传统的优化方法来求解.自1960年以来,人们对求解这类难 解问题日益增加.一种模仿生物自然进化过程的、被称为“ 进化算法(evolutionaryalgorithm)”的随机优化技术在解这 类优化难题中显示了优于传统优化算法的性能。目前,进化 算法主要包括三个研究领域:遗传算法、进化规划和进化 策略。其中遗传算法是迄今为止进化算法中应用最多、比较 成熟、广为人知的算法。 一、遗传算法简介 遗传算法(GeneticAlgorithm,GA)最先是由美国Mic- hgan大学的JohnHolland于1975年提出的。遗传算法是 模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算 模型。它的思想源于生物遗传学和适者生存的自然规律, 是具有“生存+检测”的迭代过程的搜索算法。遗传算法 以一种群体中的所有个体为对象,并利用随机化技术指 导对一个被编码的参数空间进行高效搜索。其中,选择、 交叉和变异构成了遗传算法的遗传操作;参数编码、初始 群体的设定、适应度函数的设计、遗传操作设计、控制参 数设定等5个要素组成了遗传算法的核心内容。 遗传算法的基本步骤: 遗传算法是一种基于生物自然选择与遗传机理的随机 搜索算法,与传统搜索算法不同,遗传算法从一组随机产 生的称为“种群(Population)”的初始解开始搜索过程。种 群中的每个个体是问题的一个解,称为“染色体(chromos ome)”。染色体是一串符号,比如一个二进制字符串。这 些染色体在后续迭代中不断进化,称为遗传。在每一代中 用“适值(fitness)”来测量染色体的好坏,生成的下一代染 色体称为后代(offspring)。后代是由前一代染色体通过交 叉(crossover)或者变异(mutation)运算形成的。 在新一代形成过程中,根据适度的大小选择部分后代,淘 汰部分后代。从而保持种群大小是常数。适值高的染色体 被选中的概率较高,这样经过若干代之后,算法收敛于最 好的染色体,它很可能就是问题的最优解或次优解。 主要步骤如下所示: (1)编码:GA在进行搜索之前先将解空间的解数据表示成 遗传空间的基因型串结构数据,这些串结构数据的不同组 合便构成了不同的点。 (2)初始群体的生成:随机产生N个初始串结构数据,每个 串结构数据称为一个个体,N个个体构成了—个群体。 GA以这N个串结构数据作为初始点开始迭代。 (3)适应性值评估检测:适应性函数表明个体或解的优劣性。 对于不同的问题,适应性函数的定义方式也不同。 (4)选择:选择的目的是为了从当前群体个选出优良的个体 ,使它们有机会作为父代为下一代繁殖子孙。遗传算法通 过选择过程体现这一思想,进行选择的原则是适应性强的 个体为下一代贡献一个或多个后代的概率大。选择实现了 达尔文的适者生存原则。 (5)交叉:交叉操作是遗传算法中最主要的遗传操作。通过 交叉操作可以得到新一代个体,新个体组合了其父辈个体 的特性。交叉体现了信息交换的思想。 (6)变异:变异首先在群体中随机选择一个个体,对于选中 的个体以一定的概率随机地改变串结构数据中某个串的值。 同生物界一样,GA中变异发生的概率很低,通常取值在 0.001~0.01之间。变异为新个体的产中提供了机会。 实际上,遗传算法中有两类运算: ●遗传运算:交叉和变异 编码和种群生成 种群适应度估计 选择 交叉 变异 ●进化运算:选择 GA的计算过程流程图 遗传算法的特点 GA是对问题参数的编码组进行计算, 而不是针对参数本身。 GA的搜索是从问题解的编码组开始搜素、 而不是从单个解开始。 GA使用目标函数值(适应度)这一信息进行搜索, 而不需导数等其他信息。 GA算法使用的选择、交叉、变异这三个算子都是随机操作, 而不是确定规则。 举例图解说明计算流程 二、遗传算法的MATLAB实现 需要如下主函数: 编码和种群生成 function[pop]=initializega(num,bounds,evalFN,evalOps,options) %pop-theinitial,evaluated,randompopulation %num-thesizeofthepopulation,i.e.thenumbertocreate %bounds-thenumberofpermutationsinanindividual(e.g.,number %ofcitiesinatsp %e