预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本节讨论恒定磁场和高频交变磁场共同作用下的铁磁体: 磁化率(磁导率)变为张量,存在损耗的情况下,各张量元均为复数。因磁化率张量是非对称的,电磁波在磁化介质中沿磁化方向传播时,会发生偏振面的旋转,称作旋磁性。 恒定磁场的强度和高频交变磁场的频率满足一定关系时,铁磁体从交变场中吸收的能量达到极大值,我们称之为铁磁共振现象。 交变磁场的幅值超过一定限度时会出现一系列的非线性效应。 铁磁材料的旋磁性和铁磁共振现象在微波器件上有着广泛的应用,是铁氧体磁性材料的重要应用领域。摘自kittel8版p253(下面M=MS,H都是矢量) 在第二章关于抗磁性的讨论中,我们曾给出原子磁距在外磁场中的运动方程:是原子磁距,γ是旋磁比,g是朗德因子。阻尼的来源是复杂的,人们唯像地提出了三种表达方式:上述方程中的磁场应该指铁磁体内的有效磁场:代入方程中有:令:显然,恒磁场和交变磁场共同作用下,磁化率变为张量。其张量元都是频率的函数,在ω=ω0时,发生共振,张量元(在无损耗下)无限大。 出现张量磁化率的意义是:由于进动,某方向上的微波磁化强度不但与同方向上微波磁场强度有关,也与垂直方向的微波磁场强度有关。或者说某方向上微波磁场不但影响该方向上的磁化强度,而且还影响垂直方向上的磁化强度。求解有阻尼项的旋磁方程:按正负圆偏振交变磁场情况来讨论铁磁体的共振,更能反映其特征。在共振频率处,磁导率虚部出现极大值,意味着当微波磁场频率和磁距进动频率相等时,磁距进动从微波场中吸收的能量最多、并通过阻尼作用消耗掉,变为热能。共振是两种运动频率相等时产生的强烈的能量交换现象。不同材料的阻尼情况不同,损耗大小也不同。通常用共振线宽ΔH来表示,定义如图:实际材料: 可以估出: 由此可见弛豫过程是非常短暂的,其机理尚不完全清楚,比较可以肯定的是:或通过自旋-晶格耦合使磁距一致进动的能量直接转化为声子;或先通过自旋-自旋耦合,使磁距的一致进动转变为非一致进动,磁距的非一致进动再通过自旋-晶格耦合转变为声子,总之都转变为晶格的热振动,使材料的温度升高。1.形状的影响: 2.磁晶各向异性的影响:(以立方晶系为例) 3.自然共振:没有外磁场时,材料内部的磁晶各向异性场和微波交变磁场联合作用也会引起共振,称自然共振。由于不加外场时磁畴结构比较复杂,畴壁上的退磁能直接影响着共振频率,因此自然共振峰往往出现在一个很宽的频率范围内,成为许多铁氧体高频或超高频波段频散和损耗的来源。 4.未饱和磁化的影响;当微波频率较低,相应的共振磁场不足以使铁磁体饱和磁化时,由于磁畴形状和磁矩取向的差别,其共振频率不会是单一的,而是出现在一个较宽的频率范围内,同一外磁场下会出现复峰或多峰。 5.多晶材料的共振:各种不同的磁晶各异效果,共振峰很宽。 球型样品: 圆薄片样品: 圆柱样品:复杂情形共振频率的确定要从能量关系出发:前面几节中都假定样品中的原子磁矩在围绕恒磁场的进动过程中始终保持方向一致,没有相位上的差异,然而实际上是存在着非一致进动的,静磁性共振和自旋波共振就属于非一致进动。一致共振峰电磁波在旋磁介质中传播时,会发生一些特殊的现象: 1.法拉第效应:当电磁波平行于磁场方向传播时,由于正负圆偏振波的传播速度不同,会发生偏振面的旋转。而且这种偏转只和恒磁场的方向有关,和电磁波的传播方向无关。利用法拉第效应可以制作成非互易器件。以上讨论虽只针对铁磁物质进行,但所有自旋系统在恒定磁场和交变磁场共同作用下,都会发生共振现象,所以磁共振是物质最普遍的性质之一,有着越来越广泛的应用。文献中常用到的缩写有:FMR(铁磁共振),AFMR(反铁磁共振),SWR(自旋波共振),EPR(电子顺磁共振),ESR(电子自旋共振),NMR(核磁共振)NQR(核四极矩共振)等。45一个球形单畴颗粒,具有单轴磁晶各向异性。沿垂直易磁化轴方向加磁场。证明在弱磁场中的磁化率为