预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.1数据预处理 数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。一般意义的数据预处理包括缺失值填写和噪声数据的处理。于此我们只对数据做缺失值填充,但是依然将其统称数据清理。 1.1.1数据导入与定义 单击“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。 图1-1导入数据 导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。单击菜单栏的“”-->“”将所选的变量改为数值型。如图1-2所示: 图1-2定义变量数据类型 1.1.2数据清理 数据清理包括缺失值的填写和还需要使用SPSS分析工具来检查各个变量的数据完整性。单击“”-->“”,将检查所输入的数据的缺失值个数以及百分比等。如图1-3所示: 图1-3缺失值分析 能源数据缺失值分析结果如表1-1所示: 单变量统计N均值标准差缺失极值数目a计数百分比低高能源消费总量300.001煤炭消费量300.002焦炭消费量300.002原油消费量28201汽油消费量300.001煤油消费量28204柴油消费量300.002燃料油消费量300.003天然气消费量300.002电力消费量300.003原煤产量26402焦炭产量29102原油产量181200燃料油产量25503汽油产量26402煤油产量201000柴油产量26401天然气产量201003电力产量300.000表2-1能源消耗量与产量数据缺失值分析表1-1能源消耗量与产量数据缺失值分析 SPSS提供了填充缺失值的工具,点击菜单栏“”-->“”,即可以使用软件提供的几种填充缺失值工具,包括序列均值,临近点中值,临近点中位数等。结合本次实习数据的具体情况,我们不使用SPSS软件提供的替换缺失值工具,主要是手动将缺失值用零值来代替。 1.1.3描述性数据汇总 描述性数据汇总技术用来获得数据的典型性质,我们关心数据的中心趋势和离中趋势,根据这些统计值,可以初步得到数据的噪声和离群点。中心趋势的量度值包括:均值(mean),中位数(median),众数(mode)等。离中趋势量度包括四分位数(quartiles),方差(variance)等。 SPSS提供了详尽的数据描述工具,单击菜单栏的“”-->“”-->“”,将弹出如图2-4所示的对话框,我们将所有变量都选取到,然后在选项中勾选上所希望描述的数据特征,包括均值,标准差,方差,最大最小值等。由于本次数据的单位不尽相同,我们需要将数据标准化,同时勾选上“将标准化得分另存为变量”。 图1-4描述性数据汇总 得到如表1-2所示的描述性数据汇总。 N极小值极大值均值标准差方差能源消费总量3091126164煤炭消费量3033229001焦炭消费量30195461原油消费量3005555汽油消费量3018771煤油消费量300262柴油消费量30271368燃料油消费量3001574天然气消费量301106电力消费量30983004原煤产量30058142焦炭产量3009202原油产量2904341燃料油产量300497汽油产量3001032煤油产量300219柴油产量3001911天然气产量300164电力产量30972536有效的N(列表状态)29表1-2描述性数据汇总 标准化后得到的数据值,以下的回归分析将使用标准化数据。如图1-5所示: 图1-5数据标准化 我们还可以通过描述性分析中的“”来得到各个变量的众数,均值等,还可以根据这些量绘制直方图。我们选取个别变量(能源消费总量)的直方图,可以看到我们因变量基本符合正态分布。如图1-6所示: 图1-6能源消费总量 1.2回归分析 我们本次实验主要考察地区能源消费总额(因变量)与煤炭消费量、焦炭消费量、原油消费量、原煤产量、焦炭产量、原油产量之间的关系。以下的回归分析所涉及只包括以上几个变量,并使用标准化之后的数据。 1.2.1参数设置 单击菜单栏“”-->“”-->“”,将弹出如图1-7所示的对话框,将通过选择因变量和自变量来构建线性回归模型。因变量:标准化能源消费总额;自变量:标准化煤炭消费量、标准化焦炭消费量、标准化原油消费量、标准化原煤产量、标准化焦炭产量、标准化原油产量。自变量方法选择:进入,个案标签使用地名,不使用权重最小二乘法回归分析—即WLS权重为空。 图1-7选择线性回归变量还需要设置统计量的参数,我们选择回归系数中的“”和其他项中的“”。选中估计可输出回归系数B及其标准误,t值和p值,还有标准化的回归系数beta。选中模型拟合度复选框:模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:R,R