预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共43页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

,,1–43() cKluwerAcademicPublishers,Boston.ManufacturedinTheNetherlands. ATutorialonSupportVectorMachinesforPattern Recognition CHRISTOPHERJ.C.BURGESburges@lucent.com BellLaboratories,LucentTechnologies Abstract.ThetutorialstartswithanoverviewoftheconceptsofVCdimensionandstructuralrisk minimization.WethendescribelinearSupportVectorMachines(SVMs)forseparableandnon-separable data,workingthroughanon-trivialexampleindetail.Wedescribeamechanicalanalogy,anddiscuss whenSVMsolutionsareuniqueandwhentheyareglobal.Wedescribehowsupportvectortrainingcan bepracticallyimplemented,anddiscussindetailthekernelmappingtechniquewhichisusedtoconstruct SVMsolutionswhicharenonlinearinthedata.WeshowhowSupportVectormachinescanhaveverylarge (eveninfinite)VCdimensionbycomputingtheVCdimensionforhomogeneouspolynomialandGaussian radialbasisfunctionkernels.WhileveryhighVCdimensionwouldnormallybodeillforgeneralization performance,andwhileatpresentthereexistsnotheorywhichshowsthatgoodgeneralizationperformance isguaranteedforSVMs,thereareseveralargumentswhichsupporttheobservedhighaccuracyofSVMs, whichwereview.Resultsofsomeexperimentswhichwereinspiredbytheseargumentsarealsopresented. Wegivenumerousexamplesandproofsofmostofthekeytheorems.Thereisnewmaterial,andIhopethat thereaderwillfindthatevenoldmaterialiscastinafreshlight. Keywords:SupportVectorMachines,StatisticalLearningTheory,VCDimension,PatternRecognition Appearedin:DataMiningandKnowledgeDiscovery2,121-167,1998 1.Introduction Thepurposeofthispaperistoprovideanintroductoryyetextensivetutorialonthebasic ideasbehindSupportVectorMachines(SVMs).Thebooks(Vapnik,1995;Vapnik,1998) containexcellentdescriptionsofSVMs,buttheyleaveroomforanaccountwhosepurpose fromthestartistoteach.Althoughthesubjectcanbesaidtohavestartedinthelate seventies(Vapnik,1979),itisonlynowreceivingincreasingattention,andsothetime appearssuitableforanintroductoryreview.Thetutorialdwellsentirelyonthepattern recognitionproblem.Manyoftheideastherecarrydirectlyovertothecasesofregres