预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

VAR模型与Granger因果检验 单一方程时间序列模型探讨的是单个变量的动态规律性,但在现实经济分析中,经常会面对由多个变量构成的系统,而这些变量之间通常具有关联性。因此,在一个经济系统中,一个变量的变化不仅会与其自身滞后值有关,还会与其它变量滞后值有关。这就需要把单变量自回归模型推广到多变量自回归模型,即VAR模型。 一、向量自回归(VAR)模型 向量自回归模型是Sims(vectorautoregressivemodel)在1980年提出的。这种模型采用多方程联立的形式,它不以经济理论为基础,在模型的每一个方程中,内生变量对模型的全部内生变量的滞后值进行回归,从而估计全部内生变量的动态关系。 (一)VAR模型的定义 VAR模型是自回归模型的联立形式,所以称向量自回归模型。假设y1t,y2t之间存在关系,如果分别建立两个自回归模型 y1,t=f(y1,t-1,y1,t-2,…) y2,t=f(y2,t-1,y2,t-2,…) 则无法捕捉两个变量之间的关系。如果采用联立的形式,就可以建立起两个变量之间的关系。VAR模型的结构与两个参数有关。一个是所含变量个数N,一个是最大滞后阶数k。 以两个变量y1t,y2t滞后1期的VAR模型为例, y1,t=1+11.1y1,t-1+12.1y2,t-1+u1t y2,t=2+21.1y1,t-1+22.1y2,t-1+u2t(4.1.1) 其中u1t,u2tIID(0,2),Cov(u1t,u2t)=0。写成矩阵形式是, =++(4.1.2) 设,Yt=,=,1=,ut=, 则,Yt=+1Yt-1+ut(4.1.3) 那么,含有N个变量滞后k期的VAR模型表示如下: Yt=+1Yt-1+2Yt-2+…+kYt-k+ut,utIID(0,)(4.1.4) 其中, Yt=(y1,ty2,t…yN,t)' =(12…N)' j=,j=1,2,…,k ut=(u1tu2,t…uNt)', Yt为N1阶时间序列列向量。为N1阶常数项列向量。1,…,k均为NN阶参数矩阵,utIID(0,)是N1阶随机误差列向量,其中每一个元素都是非自相关的,但这些元素,即不同方程对应的随机误差项之间可能存在相关。 因VAR模型中每个方程的右侧只含有内生变量的滞后项,他们与ut是不相关的,所以可以用OLS法依次估计每一个方程,得到的参数估计量都具有一致性。 (二)VAR模型的特点 (1)不以严格的经济理论为依据。在建模过程中只需明确两件事:①共有哪些变量是相互有关系的,把有关系的变量包括在VAR模型中;②确定滞后期k。使模型能反映出变量间相互影响的绝大部分。 (2)VAR模型对参数不施加零约束。(参数估计值有无显著性,都保留在模型中) (3)VAR模型的解释变量中不包括任何当期变量,所有与联立方程模型有关的问题在VAR模型中都不存在。 (4)VAR模型的另一个特点是有相当多的参数需要估计。比如一个VAR模型含有三个变量,最大滞后期k=3,则有kN2=332=27个参数需要估计。当样本容量较小时,多数参数的估计量误差较大。 (5)无约束VAR模型的应用之一是预测。由于在VAR模型中每个方程的右侧都不含有当期变量,这种模型用于预测的优点是不必对解释变量在预测期内的取值做任何预测。 西姆斯(Sims)认为VAR模型中的全部变量都是内生变量。近年来也有学者认为具有单向因果关系的变量,也可以作为外生变量加入VAR模型。 二、格兰杰非因果性检验 VAR模型还可用来检验一个变量与另一个变量是否存在因果关系。经济计量学中格兰杰(Granger)非因果性定义如下: 格兰杰非因果性:如果由yt和xt滞后值所决定的yt的条件分布与仅由yt滞后值所决定的条件分布相同,即 (ytyt-1,…,xt-1,…)=(ytyt-1,…),(4.2.1) 则称xt-1对yt存在格兰杰非因果性。 格兰杰非因果性的另一种表述是其他条件不变,若加上xt的滞后变量后对yt的预测精度不存在显著性改善,则称xt-1对yt存在格兰杰非因果性关系。 为简便,通常总是把xt-1对yt存在非因果关系表述为xt(去掉下标-1)对yt存在非因果关系(严格讲,这种表述是不正确的)。在实际中,除了使用格兰杰非因果性概念外,也使用“格兰杰因果性”概念。顾名思义,这个概念首先由格兰杰(Granger1969)提出。西姆斯(Sims1972)也提出因果性定义。这两个定义是一致的。 根据以上定义,xt对yt是否存在因果关系的检验可通过检验VAR模型以yt为被解释变量的方程中是否可以把xt的全部滞后变量剔除掉而完成。比如VAR模型中以yt为被解释变量的方程表示如下: yt=++u1t(4.2.3) 如有必要,常