预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共38页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

统计学第十章主成分分析和因子分析汇报什么?需要高度概括本章介绍两种把变量维数降低以便于描述、理解和分析的方法:主成分分析(principalcomponentanalysis)和因子分析(factoranalysis)。 实际上主成分分析可以说是因子分析的一个特例。在引进主成分分析之前,先看下面的例子。成绩数据(student.txt)SPSS数据形式从本例可能提出的问题空间的点空间的点椭圆的长短轴椭圆的长短轴主轴和主成分主轴和主成分主成分之选取主成分分析的数学对于我们的数据,SPSS输出为特征值的贡献还可以从SPSS的所谓碎石图看出怎么解释这两个主成分。主成分是原始六个变量的线性组合。这由下表给出。如用x1,x2,x3,x4,x5,x6分别表示原先的六个变量,而用y1,y2,y3,y4,y5,y6表示新的主成分,那么,第一和第二主成分为比如y1表示式中x1的系数为-0.806,这就是说第一主成分和数学变量的相关系数为-0.806。 相关系数(绝对值)越大,主成分对该变量的代表性也越大。可以看得出,第一主成分对各个变量解释得都很充分。而最后的几个主成分和原先的变量就不那么相关了。可以把第一和第二主成分的载荷点出一个二维图以直观地显示它们如何解释原来的变量的。这个图叫做载荷图。该图左面三个点是数学、物理、化学三科,右边三个点是语文、历史、外语三科。图中的六个点由于比较挤,不易分清,但只要认识到这些点的坐标是前面的第一二主成分载荷,坐标是前面表中第一二列中的数目,还是可以识别的。10.2因子分析10.2因子分析主成分分析与因子分析的公式上的区别对于我们的数据,SPSS因子分析输出为这个表说明六个变量和因子的关系。为简单记,我们用x1,x2,x3,x4,x5,x6来表示math(数学),phys(物理),chem(化学),literat(语文),history(历史),english(英语)等变量。这样因子f1和f2与这些原变量之间的关系是(注意,和主成分分析不同,这里把成分(因子)写在方程的右边,把原变量写在左边;但相应的系数还是主成分和各个变量的线性相关系数,也称为因子载荷):这里,第一个因子主要和语文、历史、英语三科有很强的正相关;而第二个因子主要和数学、物理、化学三科有很强的正相关。 因此可以给第一个因子起名为“文科因子”,而给第二个因子起名为“理科因子”。 从这个例子可以看出,因子分析的结果比主成分分析解释性更强。这些系数所形成的散点图(在SPSS中也称载荷图)为计算因子得分该输出说明第一和第二主因子为(习惯上用字母f来表示因子)可以按照如下公式计算,该函数称为因子得分(factorscore)。10.3因子分析和主成分分析的一些注意事项10.3因子分析和主成分分析的一些注意事项SPSS实现(因子分析与主成分分析)