预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

多元回归分析 影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型: 其中:b0是回归常数;bk(k=1,2,3,…,n)是回归参数;e是随机误差。 多元回归在病虫预报中的应用实例: 某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。分级别数值列成表2-1。 预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。 预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。 表2-1 x1x2x3x4y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别19601022411214.31211011961300144030.111141196269936717.511191196318764675417.147455419654318011.9121111966422220101013119678063510311.82322831976115124020.612171197171831460418.444245419728033630413.433226319735722280213.224216219742641330342.243219219751981165271.84532331976461214017.515328319777693640444.7432444197825516510101112数据保存在“HYPERLINK"javascript:if(confirm('http://zhibao.swu.edu.cn/epcl/spss/data/DATA5-2.sav%20%20\\n\\n文件并未依%20Teleport%20Pro%20取回,因为%20服务器报告未找到此文件。%20%20\\n\\n你要从服务器上打开它吗?'))window.location='http://zhibao.swu.edu.cn/epcl/spss/data/DATA5-2.sav'"DATA6-5.SAV”文件中。 1)准备分析数据 在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。编辑后的数据显示如图2-1。 图2-1 或者打开已存在的数据文件“HYPERLINK"javascript:if(confirm('http://zhibao.swu.edu.cn/epcl/spss/data/DATA6-5.SAV%20%20\\n\\n文件并未依%20Teleport%20Pro%20取回,因为%20服务器报告未找到此文件。%20%20\\n\\n你要从服务器上打开它吗?'))window.location='http://zhibao.swu.edu.cn/epcl/spss/data/DATA6-5.SAV'"DATA6-5.SAV”。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口。 图2-2线性回归对话窗口 3)设置分析变量 设置因变量:用鼠标选中左边变量列表中的“幼虫密度[y]”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里。 设置自变量:将左边变量列表中的“蛾量[x1]”、“卵量[x2]”、“降水量[x3]”、“雨日[x4]”变量,选移到“Independent(S)”自变量显示栏里。 设置控制变量:本例子中不使用控制变量,所以不选择任何变量。 选择标签变量:选择“年份”为标签变量。 选择加权变量:本例子没有加权变量,因此不作任何设置。 4)回归方式 本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。因此在“Method”框中选中“Enter”选项,建立全回