预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共78页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

统计分析与SPSS的应用回归分析概述回归分析概述线性回归分析概述一元线性回归分析一元线性回归方程的检验一元线性回归方程的检验一元线性回归方程的检验一元线性回归方程的检验一元线性回归方程的检验一元线性回归分析操作一元线性回归分析操作一元线性回归分析操作线性回归方程的残差分析线性回归方程的残差分析线性回归方程的残差分析线性回归方程的预测多元线性回归分析多元线性回归方程的检验多元线性回归方程的检验多元线性回归方程的检验多元线性回归方程的检验多元线性回归分析中的自变量筛选多元线性回归分析中的自变量筛选多元线性回归分析中的自变量筛选多元线性回归分析中的自变量筛选线性回归分析中的共线性检测线性回归分析中的共线性检测线性回归分析中的异方差问题多元线性回归分析操作多元线性回归分析操作多元线性回归分析操作曲线估计(curveestimate)曲线估计(curveestimate)曲线估计(curveestimate)线性回归分析的内容 能否找到一个线性组合来说明一组自变量和因变量的关系 如果能的话,这种关系的强度有多大,也就是利用自变量的线性组合来预测因变量的能力有多强 整体解释能力是否具有统计上的显著性意义 在整体解释能力显著的情况下,哪些自变量有显著意义 回归分析的一般步骤 确定回归方程中的解释变量(自变量)和被解释变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测8.4.2线性回归模型 一元线性回归模型的数学模型: 其中x为自变量;y为因变量;为截距,即常量;为回归系数,表明自变量对因变量的影响程度。用最小二乘法求解方程中的两个参数,得到: 多元线性回归模型8.4.3线性回归方程的统计检验 8.4.3.1回归方程的拟合优度 回归直线与各观测点的接近程度称为回归方程的拟合优度, 也就是样本观测值聚集在回归线周围的紧密程度。 1、离差平方和的分解: 建立直线回归方程可知:y的观测值的总变动 可由来反映,称为总变差。引起总变差的 原因有两个: 由于x的取值不同,使得与x有线性关系的y值不同; 随机因素的影响。x总离差平方和可分解为2、可决系数(判定系数、决定系数)对于多元线性回归方程: 在多元线性回归分析中,引起判定系数增加的原因有两个:一个是方程中的解释变量个数增多,另一个是方程中引入了对被解释变量有重要影响的解释变量。如果某个自变量引入方程后对因变量的线性解释有重要贡献,那么必然会使误差平方和显著减小,并使平均的误差平方和也显著减小,从而使调整的判定系数提高。所以在多元线性回归分析中,调整的判定系数比判定系数更能准确的反映回归方程的拟合优度。8.4.3.2回归方程的显著性检验(方差分析F检验) 回归方程的显著性检验是要检验被解释变量与所有的解释变量之间的线性关系是否显著。 对于一元线性回归方程,检验统计量为: 对于多元线性回归方程,检验统计量为:8.4.3.3回归系数的显著性检验(t检验) 回归系数的显著性检验是要检验回归方程中被解释变量与每一个解释变量之间的线性关系是否显著。 对于一元线性回归方程,检验统计量为: 对于多元线性回归方程,检验统计量为:8.4.3.4残差分析 残差是指由回归方程计算得到的预测值与实际样本值之间的差距,定义为: 对于线性回归分析来讲,如果方程能够较好的反映被解释变量的特征和规律性,那么残差序列中应不包含明显的规律性。残差分析包括以下内容:残差服从正态分布,其平均值等于0;残差取值与X的取值无关;残差不存在自相关;残差方差相等。1、对于残差均值和方差齐性检验可以利用残差图进行分析。如果残差均值为零,残差图的点应该在纵坐标为0的中心的带状区域中随机散落。如果残差的方差随着解释变量值(或被解释变量值)的增加呈有规律的变化趋势,则出现了异方差现象。 2、DW检验。DW检验用来检验残差的自相关。检验统计量为: DW=2表示无自相关,在0-2之间说明存在正自相关,在2-4之间说明存在负的自相关。一般情况下,DW值在1.5-2.5之间即可说明无自相关现象。8.4.3.5多重共线性分析 多重共线性是指解释变量之间存在线性相关关系的现象。测度多重共线性一般有以下方式: 1、容忍度: 其中,是第i个解释变量与方程中其他解释变量间的复相关系数的平方,表示解释变量之间的线性相关程度。容忍度的取值范围在0-1之间,越接近0表示多重共线性越强,越接近1表示多重共线性越弱。 2、方差膨胀因子VIF。方差膨胀因子是容忍度的倒数。VIF越大多重共线性越强,当VIF大于等于10时,说明存在严重的多重共线性。 3、特征根和方差比。根据解释变量的相关系数矩阵求得的特征根中,如果最大的特征根远远大于其他特征根,则说明这些解释变量间具有相当多的重复信息。如果某个特征根既能够刻画某解释变量