预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

做脑电波信号处理滴嘿嘿。。Matlabaddicted Codes %FEATUREEXTRACTER function[features]=EEGfeaturetrainmod(filename,m) a=4; b=7; d=12; e=30; signals=0; forindex=1:9;%readinthefirsttenEEGdatabecausethefilesarenumberedasha11test01ratherthanha11test1. s=[filename'0'num2str(index)'.dat']; signal=tread_wfdb(s); ifsignals==0; signals=signal; elsesignals=[signalssignal]; end end forindex=10:1:m/2;%readintherestoftheEEGtrainingdata s=[filenamenum2str(index)'.dat']; signal=tread_wfdb(s); ifsignals==0; signals=signal; elsesignals=[signalssignal]; end end %%%%%modificationjustforvaryingthetrainingtestingratio------ forindex=25:1:25+m/2;%readintherestoftheEEGtrainingdata s=[filenamenum2str(index)'.dat']; signal=tread_wfdb(s); ifsignals==0; signals=signal; elsesignals=[signalssignal]; end end %%%%%endofmodificationjustforvaryingthetrainingtestingratio----- forl=1:m%exratingfeatures(powerofeachkindofEEGwaveforms) [Pxx,f]=pwelch(signals(:,l)-mean(signals(:,l)),[],[],[],200);%relativepower fdelta(l)=sum(Pxx(find(f<a))); ftheta(l)=sum(Pxx(find(f<b&f>a))); falpha(l)=sum(Pxx(find(f<d&f>b))); fbeta(l)=sum(Pxx(find(f<e&f>d))); fgama(l)=sum(Pxx(find(f>e)));%gamawaveincludedforadditionalwork end features=[fdelta;ftheta;falpha;fbetaa;fgama]; features=features'; end %CLASSIFIER %(Hasthreesimilarclassificationmodifation:EEGclassification,EEGclassificationmodandEEGclassificationmod1savedandusedintherunningfileforadditionalworks) function[class,err,classall,errall]=EEGclassification(trainfilename,m,testfilename,n,p,q) %p-waveform1,q-waveformtwoo–waveformthree %1-delta2-theta3-alpha4–beta5-Gamma [featurestrain]=EEGfeature(trainfilename,m); %modificationtoEEGfeaturemodfunctionforvaryingtestingtrainingratio [featurestest]=EEGfeature(testfilename,n); training=[featurestrain(:,p)featurestrain(:,q)]; %modifyhowmanyfeaturestoextracthere sample=[featurestest(:,p)featurestest(:,q)]; group=[ones(m/2,1);2*ones(m/2,1)]; traininga=featurestrain; samplea