基于Gabor感知多成份字典的图像稀疏表示算法研究.pdf
qw****27
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于Gabor感知多成份字典的图像稀疏表示算法研究.pdf
万方数据基于Gabor感知多成份字典的图像稀疏表示算法研究肖亮1韦志辉zMulti—componentminIInll0(1)孙玉宝-邵文泽tImages调和分析认为,图像可以表示为一组基函数的线性组合,如Fourier基函数、小波函数等.受人类视觉皮层神经元响应的稀疏性启发[1】’Olshausen提示(Sparserepresentation)[2一引.稀疏表示模型要求图像线性展开中大部分基函数的系数为零,只有少数基函数具有较人的非零系数.这里称基函数为原子,所有原子信号的集合为字典.稀疏表示使信号能
基于Gabor字典的高光谱图像稀疏表示研究.docx
基于Gabor字典的高光谱图像稀疏表示研究标题:基于Gabor字典的高光谱图像稀疏表示研究摘要:高光谱图像在遥感、地质勘探等领域具有广泛的应用。为了更好地理解和利用高光谱图像,研究者们一直致力于开发有效的数据表示和分析方法。稀疏表示理论在信号处理领域取得了显著的成果,它可以通过在一组基函数上将信号表示为稀疏线性组合来捕捉其特征。本文提出了一种基于Gabor字典的高光谱图像稀疏表示方法,通过将高光谱图像转化为Gabor特征表示,应用稀疏表示理论实现了高光谱图像的稀疏表示和恢复。实验证明,该方法能够有效地提取
基于稀疏表示与字典训练的图像着色与图像修复算法研究.docx
基于稀疏表示与字典训练的图像着色与图像修复算法研究近年来,图像着色和图像修复一直是计算机视觉领域的研究热点。在进行图像处理时,往往需要对图像进行着色及修复,以表现出更加真实、生动的效果,这对于提升图像质量和人眼感受体验至关重要。本文将介绍一种基于稀疏表示与字典训练的图像着色与图像修复算法。1.引言图像着色和修复是计算机视觉中非常重要的两个问题。其中图像着色用于为灰度图像添加颜色信息,从而获得更加真实完整的图像。而图像修复则是通过补全图像中缺失的信息来提高图像质量。因此图像着色和修复在实际应用中具有非常广泛
基于过完备字典与稀疏表示的多聚焦图像融合研究.pptx
汇报人:CONTENTSPARTONEPARTTWO研究背景研究意义研究现状与问题PARTTHREE过完备字典稀疏表示字典学习与优化PARTFOUR图像融合基本原理传统图像融合方法基于字典学习的图像融合方法PARTFIVE算法设计思想算法流程与实现实验结果与分析算法优势与局限性PARTSIX创新点总结对领域的贡献对后续研究的影响PARTSEVEN研究成果总结未来研究方向展望汇报人:
基于稀疏表示与字典训练的图像着色与图像修复算法研究的中期报告.docx
基于稀疏表示与字典训练的图像着色与图像修复算法研究的中期报告本文研究了基于稀疏表示与字典训练的图像着色与图像修复算法。研究内容主要包括算法原理、实验设计与结果分析。一、算法原理本文提出的图像着色与图像修复算法基于稀疏表示和字典训练。算法分为三个步骤:字典学习、稀疏表示和重建。1.字典学习在训练集中,首先从图像中随机选取一些块,将它们组成一个向量,得到一个初始字典。然后,使用迭代算法,在样本的基础上不断优化字典,使得字典中的元素最好地表示图像块的结构和纹理特征。2.稀疏表示在测试阶段,对于一个待着色或待修复