预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

bpsk调制原理 2011-08-1808:18:59来源:互联网 bpsk调制原理 与模拟通信系统相比,数字调制和解调同样是通过某种方式,将基带信号的频谱由一个频率位置搬移到另一个频率位置上去。不同的是,数字调制的基带信号不是模拟信号而是数字信号。 在大多数情况下,数字调制是利用数字信号的离散值去键控载波。对载波的幅度、频率或相位进行键控,便可获得ASK、FSK、PSK等。这三种数字调制方式在抗干扰噪声能力和信号频谱利用率等方面,以相干PSK的性能最好,目前已在中、高速传输数据时得到广泛应用。 2PSK系统的调制部分框图如下图所示 2PSK/BPSK调制部分框图 1、M序列发生器 实际的数字基带信号是随机的,为了实验和测试方便,一般都是用M序列发生器产生一个伪随机序列来充当数字基带信号源。按照本原多项式f(x)=X5+X3+1组成的五级线性移位寄存器,就可得到31位码长的M序列。 码元定时与载波的关系可以是同步的,以便清晰观察码元变化时对应调制载波的相应变化;也可以是异步的,因为实际的系统都是异步的,码元速率约为1Mbt/s。 2、相对移相和绝对移相 移相键控分为绝对移相和相对移相两种。以未调载波的相位作为基准的相位调制叫作绝对移相。以二进制调相为例,取码元为“1”时,调制后载波与未调载波同相;取码元为“0”时,调制后载波与未调载波反相;“1”和“0”时调制后载波相位差1800。绝对移相的波形如下图所示。 绝对移相的波形示意图 在同步解调的PSK系统中,由于收端载波恢复存在相位含糊的问题,即恢复的载波可能与未调载波同相,也可能反相,以至使解调后的信码出现“0”、“1”倒置,发送为“1”码,解调后得到“0”码;发送为“0”码,解调后得到“1”码。这是我们所不希望的,为了克服这种现象,人们提出了相对移相方式。 相对移相的调制规律是:每一个码元的载波相位不是以固定的未调载波相位作基准的,而是以相邻的前一个码元的载波相位来确定其相位的取值。例如,当某一码元取“1”时,它的载波相位与前一码元的载波同相;码元取“0”时,它的载波相位与前一码元的载波反相。相对移相的波形如下图所示。 图4-4相对移相的波形示意图 一般情况下,相对移相可通过对信码进行变换和绝对移相来实现。将信码经过差分编码变换成新的码组——相对码,再利用相对码对载波进行绝对移相,使输出的已调载波相位满足相对移相的相位关系。 设绝对码为{ai},相对码为{bi},则二相编码的逻辑关系为:bi=ai–bi-1(1) 差分编码的功能可由一个模二和电路和一级移位寄存器组成。 对应于差分编码,在解调部分有——差分译码。差分译码的逻辑为: ci=bi+bi-1(2) 将(1)式代入(2)式,得 Ci=ai-bi-1+bi-1 ∵bi-1-bi-1=0∴Ci=ai+0=ai 这样,经差分译码后就恢复了原始的信码序列。 差分译码的功能同样可由一个模二和电路和一级移位寄存器组成。 图4-5绝对码实现相对移相的过程 3、调相电路 调相电路可由模拟相乘器实现,也可由数字电路实现。实验中的调相电路是由数字选择器(74LS153)完成。当2脚和14脚同时为高电平时,7脚输出与3脚输入的0相载波相同;当2脚和14脚同时为低电平时,7脚输出与6脚输入的π相载波相同。这样就完成了差分信码对载波的相位调制。图4-5示出了一个数字序列的相对移相的过程。 数字调相器的主要指标 在设计与调整一个数字调相器时,主要考虑的性能指标是调相误差和寄生调幅。 (1)调相误差 由于电路不理想,往往引进附加的相移,使调相器输出信号的载波相位取值为0°及180°+ΔΦ,我们把这个偏离的相角ΔΦ称为调相误差。调相器的调相误差相当于损失了有用信号的能量。 (2)寄生调幅 理想的二相相位调制器,当数码取“0”或“1”时,其输出信号的幅度应保持不变,即只有相位调制而没有附加幅度调制。但由于调制器的特性不均匀及脉冲高低电平的影响,使得“0”码和“1”码的输出信号幅度不等。设“0”码和“1”码所对应的输出信号幅度分别为Uom或Uim,则寄生调幅为: m=(Uom-Uim)/(Uom+Uim)×100%(3) 解调 2PSK系统的解调部分框图如下图所示 1、本实验采用同相正交环,同相正交环又叫科斯塔斯(Cosatas)环。原理框图如下图所示。 图4-7同相正交环原理框图 2、集成电路压控振荡器(IC-VCO) 压控振荡器(VCO)是锁相环的关键部件,它的频率调节和压控灵敏度决定于锁相环的跟踪性能。 实验电路采用一种集成电路的压控振荡器74S124。集成片配以简单的外部元件并加以适当调整,即可得到令人满意的结果。如图所示。 集成片的每一个振荡器都有两个电压控制端,Vr用于控制频率范围(14脚),Vf用于控制频率范围调节(1