预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共41页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.3算法案例一、三维目标 (a)知识与技能 1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。 (b)过程与方法 在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。(c)情感态度与价值观 1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。 2.在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。 二、教学重难点 重点:理解辗转相除法与更相减损术求最大公约数的方法。 难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。 三、学法 在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法程序框图与算法程序。35〖研探新知〗〖研探新知〗利用辗转相除法求最大公约数的步骤如下:练习1:利用辗转相除法求两数4081与20723的最大公约数.2.更相减损术:例2用更相减损术求98与63的最大公约数.3.辗转相除法与更相减损术的比较:否作业: 课本P35页练习T1; P38页A组T1.案例2秦九韶算法〖教学设计〗 这样计算上述多项式的值,一共需要9次乘法运算,5次加法运算. [问题3]能否探索更好的算法,来解决任意多项式的求值问题?例1:用秦九韶算法求多项式 f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.2-5-43-672-50-43-60f(x)=anxn+an-1xn-1+an-2xn-2+……+a1x+a0. 点评:秦九韶算法是求一元多项式的值的一种方法. 它的特点是:把求一个n次多项式的值转化为求n个一次多项式的值,通过这种转化,把运算的次数由至多n(n+1)/2次乘法运算和n次加法运算,减少为n次乘法运算和n次加法运算,大大提高了运算效率.v1=anx+an-1,否作业: 课本P35页练习T2; P38页A组T2.案例3进位制二、教学重难点 重点:各进位制表示数的方法及各进位制之间的转换 难点:除k去余法的理解以及各进位制之间转换的程序框图的设计 三、学法 在学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k去余法。 [问题1]我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制.那么什么是进位制?不同的进位制之间又有什么联系呢? 如二进制可使用的数字有0和1,基数是2; 十进制可使用的数字有0,1,2,…,8,9等十个数字,基数是10; 十六进制可使用的数字或符号有0~9等10个数字以及A~F等6个字母(规定字母A~F对应10~15),十六进制的基数是16.[问题2]十进制数3721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一,从而它可以写成下面的形式: 一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式 [问题3]二进制只用0和1两个数字,这正好与电路的通和断两种状态相对应,因此计算机内部都使用二进制.计算机在进行数的运算时,先把接受到的数转化成二进制数进行运算,再把运算结果转化为十进制数输出. 那么二进制数与十进制数之间是如何转化的呢?例1:把二进制数110011(2)化为十进制数.k进制数转化为十进制数的方法例2:把89化为二进制的数.89=44×2+1,441例3:把89化为五进制的数.[问题5]你会把三进制数10221(3)化为二进制数吗?小结作业: 1.课本P38页A组T3. 2.阅读P36-37页的“割圆术”.