预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共95页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第五章图像分割与边缘检测5.1图像分割图5-14连通和8连通4连通指的是从区域上一点出发,可通过4个方向,即上、下、左、右移动的组合,在不越出区域的前提下,到达区域内的任意像素;8连通方法指的是从区域上一点出发,可通过左、右、上、下、左上、右上、左下、右下这8个方向的移动组合来到达区域内的任意像素。 图像分割有三种不同的途径:其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法;其二是通过直接确定区域间的边界来实现分割的边界方法;其三是首先检测边缘像素,再将边缘像素连接起来构成边界形成分割。在图像分割技术中,最常用的是利用阈值化处理进行的图像分割。5.1.2灰度阈值法分割 常用的图像分割方法是把图像灰度分成不同的等级,然后用设置灰度门限(阈值)的方法确定有意义的区域或分割物体的边界。常用的阈值化处理就是图像的二值化处理,即选择一阈值,将图像转换为黑白二值图像,用于图像分割及边缘跟踪等预处理。 图像阈值化处理的变换函数表达式为图5-2阈值变换曲线在图像的阈值化处理过程中,选用不同的阈值其处理结果差异很大。如图5-3所示,阈值过大,会提取多余的部分;而阈值过小,又会丢失所需的部分(注意:当前背景为黑色,对象为白色时刚好相反)。因此,阈值的选取非常重要。 图5-3(a)原始图像的直方图如图5-4所示。分析该直方图可知,该直方图具有双峰特性,图像中的目标(细胞)分布在较暗的灰度级上形成一个波峰,图像中的背景分布在较亮的灰度级上形成另一个波峰。此时,用其双峰之间的谷低处灰度值作为阈值T进行图像的阈值化处理,便可将目标和背景分割开来。图5-3不同阈值对阈值化结果的影响 (a)原始图像;(b)阈值T=91;(c)阈值T=130;(d)阈值T=43图5-4图5-3(a)所示图像的直方图1.判别分析法确定最佳阈值 判别分析法确定最佳阈值的准则,是使进行阈值处理后分离的像素类之间的类间方差最大。判别分析法只需计算直方图的0阶矩和1阶矩,是图像阈值化处理中常用的自动确定阈值的方法。 设图像总像素数为N,灰度值为i的像素数为Ni,则至灰度级K的灰度分布的0阶矩及1阶矩分别定义为 0阶矩:1阶矩:由此可得各类的类间方差为2.p尾法确定阈值 p尾法仅适用于事先已知目标所占全图像百分比的场合。若一幅图像由亮背景和黑目标组成,已知目标占图像的(100-p)%面积,则使得至少(100-p)%的像素阈值化后匹配为目标的最高灰度,将选作用于二值化处理的阈值。5.1.3区域生长 分割的目的是把一幅图像划分成一些区域,最直接的方法就是把一幅图像分成满足某种判据的区域,也就是说,把点组成区域。为了实现分组,首先要确定区域的数目,其次要确定一个区域与其他区域相区别的特征,最后还要产生有意义分割的相似性判据。分割区域的一种方法叫区域生长或区域生成。假定区域的数目以及在每个区域中单个点的位置已知,则从一个已知点开始,加上与已知点相似的邻近点形成一个区域。相似性准则可以是灰度级、彩色、组织、梯度或其他特性,相似性的测度可以由所确定的阈值来判定。方法是从满足检测准则的点开始,在各个方向上生长区域,当其邻近点满足检测准则就并入小块区域中。当新的点被合并后再用新的区域重复这一过程,直到没有可接受的邻近点时生成过程终止。图5-5给出一个简单的例子。此例的相似性准则是邻近点的灰度级与物体的平均灰度级的差小于2。图中被接受的点和起始点均用下划线标出,其中(a)图是输入图像;(b)图是第一步接受的邻近点;(c)图是第二步接受的邻近点;(d)图是从6开始生成的结果。图5-5区域生长示例当生成任意物体时,接收准则可以结构为基础,而不是以灰度级或对比度为基础。为了把候选的小群点包含在物体中,可以检测这些小群点,而不是检测单个点,如果它们的结构与物体的结构足够相似时就接受它们。5.1.4区域聚合 区域聚合可直接用于图像分割,它要求聚合中的各个点必须在平面上相邻接而且特性相似。区域聚合的步骤是首先检查图像的测度集,以确定在测度空间中聚合的位置和数目,然后把这些聚合的定义用于图像,以得到区域聚合。区域聚合技术可以说明如下。 首先,在图片上定义某个等价关系。例如,最简单的等价关系可定义为p(i,j)=p(k,l)。也就是说,如果p(i,j)=p(k,l),就说明p(i,j)与p(k,l)等价。任何在点的格子上的等价关系又可划分为等价类。例如,p(i,j)的取值范围为0到63,就可以产生64个等价类的模板。如果关系满足,它的值等于1,否则为0。模板的图像是两两不相交的,那么64个模板就会充满整个格子。这些等价的类又可进一步分为最大连接的子集(连接分量)。连接性可以用点(i,j)的邻点来定义,如4连通邻点、8连通邻点等等。假如R是属于格子的子集,在R中存在一个点序列,第一个点