预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

龙翔教育――中小学生课外培训机构我们的使命:龙翔,让每个孩子学有所成、学有所用! 联系电话――2806939281476989 地址:深圳市宝安区民治街道锦绣江南天桥旁(可乘坐K302到锦绣江南站下车) 专题三不等式(组)与方程(组)的应用 【例题经典】 例1某市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同完成.从两个公司的业务资料看到:若两个公司合做,则恰好用12天完成;若甲、乙合做9天后,由甲再单独做5天也恰好完成.如果每天需要支付甲、乙两公司的工程费用分别为1.2万元和0.7万元. (1)甲、乙两公司单独完成这项工程各需多少天? (2)要使整个工程费用不超过22.5万元,则乙公司最少应施工多少天? 【点评】(1)利用方程组解决;(2)利用不等式解决,结合实际取值. 例2为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共在多少个交通路口安排值勤? 【分析】本题与学生生活实际联系紧密,是一道很好的列不等式组应用题,解决本题应注意路口人数与总人数之间的关系. 例3华溪学校科技夏令营的学生在3名老师的带领下,准备赴北京大学参观,体验大学生活.现有两个旅行社前来承包,报价均为每人2000元,他们都表示优惠;希望社表示带队老师免费,学生按8折收费;青春社表示师生一律按7折收费.经核算,参加两家旅行社费用正好相等. (1)该校参加科技夏令营的学生共有多少人? (2)如果又增加了部分学生,学校应选择哪家旅行社? 【点评】方程与不等式的综合应用,注意取值与实际生活要相符 【基础训练】 1.九年级的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数() A.至多6人B.至少6人C.至多5人D.至少5人 2.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排() A.4辆B.5辆C.6辆D.7辆 3.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给4个答案,其中只有一个答案正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应选对题() A.18道B.19道C.20道D.21道 4.一种灭虫药粉30千克,含药率15%,现要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%而小于35%,则所用药粉的含药率x的范围是() A.15%<x<23%B.15%<x<35%C.23%<x<47%D.23%<x<50% 5.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务,设原计划每天固沙造林x公顷,根据题意下列方程正确的是() 6.某学校要印刷一批完全材料,甲印务公司提出制版费900元,另外每份材料收印刷费0.5元;乙印务公司提出不收制版费,每份材料收印刷费0.8元. (1)分别写出两家印务公司的收费y(元)与印刷材料的份数x(份)之间的函数关系式. (2)若学校预计要印刷5000份以内的宣传材料,请问学校应选择哪一家印务公司更合算? 7.水是人类最宝贵的资源之一,我国水资源人均占有量远远低于世界平均水平,为了节约用水,保护环境,学校于本学期初制定了详细的用水计划.如果实际每天比计划多用一吨水,那么本学期的用水总量将会超过2300吨;如果实际每天计划节约一吨水,那么本学期用水量将会不足2100吨.如果本学期的在校时间按110天(22周)计算,那么学校计划每天用水量是在什么范围?(结果保留四个有效数字) 8.某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的进价和标价各是多少元? 【能力提升】 9.某公司开发的960件新产品,需加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品.在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导. (1)甲、乙两个工厂每天各能加工多少件新产品? (2)该公司要选择省时又省钱的工厂