预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

聚焦离子束(FocusedIonbeam,FIB)的系统是利用电透镜将离子束聚焦成非常小尺寸的显微切割仪器,目前商用系统的离子束为液相金属离子源(LiquidMetalIonSource,LMIS),金属材质为镓(Gallium,Ga),因为镓元素具有低熔点、低蒸气压、及良好的抗氧化力;典型的离子束显微镜包括液相金属离子源、电透镜、扫描电极、二次粒子侦测器、5-6轴向移动的试片基座、真空系统、抗振动和磁场的装置、电子控制面板、和计算机等硬设备,外加电场(Suppressor)于液相金属离子源可使液态镓形成细小尖端,再加上负电场(Extractor)牵引尖端的镓,而导出镓离子束,在一般工作电压下,尖端电流密度约为1埃10-8Amp/cm2,以电透镜聚焦,经过一连串变化孔径(AutomaticVariableAperture,AVA)可决定离子束的大小,再经过二次聚焦至试片表面,利用物理碰撞来达到切割之目的。以下为其切割(蚀刻)和沉积原理图: 在成像方面,聚焦离子束显微镜和扫描电子显微镜的原理比较相近,其中离子束显微镜的试片表面受镓离子扫描撞击而激发出的二次电子和二次离子是影像的来源,影像的分辨率决定于离子束的大小、带电离子的加速电压、二次离子讯号的强度、试片接地的状况、与仪器抗振动和磁场的状况,目前商用机型的影像分辨率最高已达4nm,虽然其分辨率不及扫描式电子显微镜和穿透式电子显微镜,但是对于定点结构的分析,它没有试片制备的问题,在工作时间上较为经济。 工作原理 液态金属离子源 离子源是聚焦离子束系统的心脏,真正的聚焦离子束始于液态金属离子源的出现,液态金属离子源产生的离子具有高亮度、极小的源尺寸等一系列优点,使之成为目前所有聚焦离子束系统的离子源。液态金属离子源是利用液态金属在强电场作用下产生场致离子发射所形成的离子源[1、2]。液态金属离子源的基本结构如图1所示 在源制造过程中,将直径0.5mm左右的钨丝经过电化学腐蚀成尖端直径只有5-10μm的钨针,然后将熔融的液态金属粘附在钨针尖上,在外加强电场后,液态金属在电场力作用下形成一个极小的尖端(泰勒锥),液态尖端的电场强度可高达1010V/m。在如此高的电场下,液态表面的金属离子以场蒸发的形式逸出表面,产生离子束流。由于液态金属离子源的发射面积极小,尽管只有几微安的离子电流,但电流密度约可达106A/cm2,亮度约为20μA/sr。 聚焦离子束系统 聚焦式离子束技术是利用静电透镜将离子束聚焦成非常小尺寸的显微切割技术,目前商用FIB系统的粒子束是从液态金属离子源中引出。由于镓元素具有低熔点、低蒸汽压以及良好的抗氧化力,因而液态金属离子源中的金属材料多为镓(Gallium,Ga)[3、4]。图2给出了聚焦离子束系统结构示意图。 在离子柱顶端外加电场(Suppressor)于液态金属离子源,可使液态金属或合金形成细小尖端,再加上负电场(Extractor)牵引尖端的金属或合金,从而导出离子束,然后通过静电透镜聚焦,经过一连串可变化孔径(AutomaticVariableAperture,AVA)可决定离子束的大小,而后用E×B质量分析器筛选出所需要的离子种类,最后通过八极偏转装置及物镜将离子束聚焦在样品上并扫描,离子束轰击样品,产生的二次电子和离子被收集并成像或利用物理碰撞来实现切割或研磨。 基本功能 聚焦离子束显微镜的基本功能可概分为四种: 1.定点切割(PrecisionalCutting)-利用离子的物理碰撞来达到切割之目的。广泛应用于集成电路(IC)和LCD的CrossSection加工和分析。 2.选择性的材料蒸镀(SelectiveDeposition)-以离子束的能量分解有机金属蒸气或气相绝缘材料,在局部区域作导体或非导体的沉积,可提供金属和氧化层的沉积(MetalandTEOSDeposition),常见的金属沉积有铂(Platinum,Pt)和钨(Tungstun,W)二种。 3.强化性蚀刻或选择性蚀刻(EnhancedEtching-Iodine/SelectiveEtching-XeF2)-辅以腐蚀性气体,加速切割的效率或作选择性的材料去除。 4.蚀刻终点侦测(EndPointDetection)-侦测二次离子的讯号,藉以了解切割或蚀刻的进行状况。 在实际的应用上,为了有效的搜寻故障的区域或外来掉落的材料碎屑、尘埃、污染粒子(Particles)等位置,离子束显微镜在外围的控制系统上,可配备自动定位导航系统或影像重叠定位装置,当生产线的缺陷检视系统(DefectInspectionSystem),例如:KLA或Tencor,发现制程异常时,可将芯片上缺陷的计算机档案传送到自动定位导航系统,离子束显微镜即可迅速找寻缺陷的位置,并进行切割动作,确认缺陷发生的层次