预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为 回到上面的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为: 在实际应用中常用的是两边取对数,得到公式如下: 其中称为对数似然,而称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即: 举个别人博客中的例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢? 我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data|M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2...那么Data=(x1,x2,…,x100)。这样, P(Data|M) =P(x1,x2,…,x100|M) =P(x1|M)P(x2|M)…P(x100|M) =p^70(1-p)^30. 那么p在取什么值的时候,P(Data|M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。 70p^69(1-p)^30-p^70*30(1-p)^29=0。 解方程可以得到p=0.7。 在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。 假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大? P(Data|M)=? 根据公式 可得: 对μ求导可得,则最大似然估计的结果为μ=(x1+x2+…+xn)/n 由上可知最大似然估计的一般求解过程: (1)写出似然函数; (2)对似然函数取对数,并整理; (3)求导数; (4)解似然方程 注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。贝叶斯估计方法将在以后的博文中描述 本文参考 http://en.wikipedia.org/wiki/Maximum_likelihood http://www.shamoxia.com/html/y2010/1520.html 最大后验概率: 最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。 首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的采样,θ为模型参数,f(pdf概率密度函数)为我们所使用的模型。那么最大似然估计可以表示为: 是先验pdf,是后验pdf。 由结果推出原因 现在,假设θ的先验分布为g。通过贝叶斯理论,对于θ的后验分布如下式所示: 最后验分布的目标为: 注:最大后验估计可以看做贝叶斯估计的一种特定形式。 举例来说: 假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是 樱桃100% 樱桃75%+柠檬25% 樱桃50%+柠檬50% 樱桃25%+柠檬75% 柠檬100% 如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个? 我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作 由于