预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

0引言近年来,第三代移动通信技术(3G)已经在世界上有些国家成功商用,在不同的环境条件下,它能够提供384Kb/s~3Mb/s的传输速度,这样的速率足以胜任传递交通信息的要求,因此通过3G移动通信技术更能实现交通信息的交互和实时传递。浮动车信息采集是伴随着ITS新技术应用而在近几年发展起来的一种交通流信息采集技术,浮动车技术研究已经成为我国智能交通系统(ITS)的热点。本文从分析浮动车信息采集系统功能人手,提出了基于3G数字移动通信技术的浮动车信息采集的一种新的解决方案。 1浮动车信息采集系统功能浮动车辆通常是指装有定位和无线通讯装置的车辆,其所采集的数据一般包括时间、位置坐标、瞬时速度、行驶方向、运行状态及其他内容。浮动车交通信息采集是指通过采集浮动车辆运行数据并进行分析处理,将其应用于交通信息服务、交通管理和停车诱导等方面。浮动车交通信息采集系统主要实现功能如图1所示。 1.1浮动车交通流数据采集浮动车辆交通流数据采集是指浮动车量通过GPS定位装置等,采集运行数据并通过无线通讯网络将运行数据传回信息控制中心。为了能够建立有效的、系统性的交通流运行数据,必须确定浮动车数量规模、采集频率和传输频率等参数。1.2交通流数据处理交通流数据处理是指采用地图匹配方法将浮动车采集到的车辆数据与数字电子地图数据库中的道路信息进行比较,通过一定的匹配算法确定出车辆可能的位置和最可能的行驶路段。浮动车地图匹配算法是系统设计关键之一。1.3路段交通流状态分析交通流分析是在地图匹配基础上估算路段旅行时间和平均速度,通过路段旅行时间和平均速度估算的结果与预先设定的阈值比较,判断路段畅通、拥挤、堵塞等不同状态,并将路段的实时交通流状况显示在电子地图或可变情报板上,从而为交通服务、交通管理和出行者提供实时直观的交通状态信息 1.4信息无线传输信息无线传输是指以无线接入网(RAN)和分组交换公共数据网(PacketSwitchedPublicDataNetwork,PSPDN)之间的网关实现浮动车采集信息的互传。无线互连除了能够实现数据的高速传输功能外,车辆驾驶员还能够通过它接人Internet,随时随地收发电子邮件和娱乐等。 2基于3G技术的浮动车信息采集系统设计根据以上浮动车信息采集系统应具备的功能分析,本文提出的基于3G移动通信技术浮动车信息采集系统由浮动车数据采集、地图匹配、交通流分析和3G无线互联网络四个子系统组成,系统网络总体方案如图2所示。系统各子系统设计分别阐述如下。 2.1数据采集子系统数据采集子系统通过路网上行驶的安装在浮动车上的车载端GPS接收器采集车辆运行数据;通过车载端的无线通信终端设备采用3G通信技术将上述信息实时传输给数据控制中心,同时还接收数据中心发送的命令。该子系统主要完成以下数据采集:车辆交通流、时间、车辆位置经度及纬度、速度、方向角和运行状态等,如图3所示。 系统设计时主要考虑以下参数:浮动车覆盖率、计算时间间隔、采集时间间隔、测量时间等。通过仿真实验得出每个时间间隔内横断面浮动车数量计算公式为:Np=P·(Q·ta/60)一般情况下,在高速公路上只要浮动车覆盖率为3%时即可,在城市道路上覆盖率为5%即可达到满意效果。采集时间间隔必须考虑覆盖率。浮动车覆盖率低,采集间隔应该缩小,反则增大。可以在工作站运用一些更加精巧的估计算法来减小其对实时性的影响,一般取采集频率为1min,上传中心频率为5min。当数据的年龄超过10min时,对实时速度数据进行简单线性衰退处理基本能对实时的估计起到比较满意的效果。2.2地图匹配子系统地图匹配是实现整个浮动车采集信息系统功能的关键,目的是减小GPS数据和GIS数据的匹配误差。为此,要对数据进行预处理并确定匹配路段。2.2.1数据预处理数据预处理包括对GIS数据和地图数据预处理两个方面。由于GIS数据一般是以矢量格式存储且所有路段都是以曲线形式表现的,为此,先将路段曲线预分割成为多条首尾连接的有向线段,从而使每条路段变成了一些线段的集合。这样可以大大提高后续地图匹配的速度和效率。为了缩小匹配路段的范围和针对性(方向),还要对地图数据预处理。首先进行地理坐标系转换,使浮动车定位数据和地图库数据所采用的地理坐标系一致。其次通过一定算法确定候选路段,常用的算法有:网格法、概率统计法、误差椭圆法、条带分割法等。本文采用网格法。该方法的原理是将电子地图按照一定的网格进行划分,然后找到GPS点所在网格,该网格所包含的路段就是候选路段。2.2.2匹配路段确定目前,车辆定位导航采用的算法有:GPS航迹匹配法、模糊逻辑法、A*、双向搜索法等。这些方法在GPS定位和导航中都有非常广泛应用。但由于浮动车数量大、匹配速度要求高,采用上述单一的传统算法都难以满足浮动车地图匹配要求。为此,本文提出分类模型算