预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学必修4知识点总结 第一章:三角函数 §1.1.1、任意角 1、正角、负角、零角、象限角的概念. 2、与角终边相同的角的集合:. §1.1.2、弧度制 1、把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、. 3、弧长公式:. 4、扇形面积公式:. §1.2.1、任意角的三角函数 1、设是一个任意角,它的终边与单位圆交于点,那么: 2、设点为角终边上任意一点,那么:(设) ,,, 3、,,在四个象限的符号和三角函数线的画法. 正弦线:MP;余弦线:OM;正切线:AT 4、特殊角0°,30°,45°,60°, 90°,180°,270等的三角函数值. 0 §1.2.2、同角三角函数的基本关系式 1、平方关系:. 2、商数关系:. 3、倒数关系: §1.3、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”) 1、诱导公式一:(其中:) 2、诱导公式二: 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: §1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图. 在上的五个关键点为: §1.4.3、正切函数的图象与性质 1、记住正切函数的图象: 2、记住余切函数的图象: 3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. 周期函数定义:对于函数,如果存在一个非零常数T,使得当取定义域内的每一个值时,都有,那么函数就叫做周期函数,非零常数T叫做这个函数的周期. 图表归纳:正弦、余弦、正切函数的图像及其性质 图象定义域值域[-1,1][-1,1]最值 无周期性奇偶性奇偶奇单调性 在上单调递增 在上单调递减在上单调递增 在上单调递减在上单调递增对称性 对称轴方程: 对称中心对称轴方程: 对称中心无对称轴 对称中心 §1.5、函数的图象 1、对于函数: 有:振幅A,周期,初相,相位,频率. 2、能够讲出函数的图象与 的图象之间的平移伸缩变换关系. 先平移后伸缩: 平移个单位 (左加右减) 横坐标不变 纵坐标变为原来的A倍 纵坐标不变 横坐标变为原来的倍 平移个单位 (上加下减) 先伸缩后平移: 横坐标不变 纵坐标变为原来的A倍 纵坐标不变 横坐标变为原来的倍 平移个单位 (左加右减) 平移个单位 (上加下减) 3、三角函数的周期,对称轴和对称中心 函数,x∈R及函数,x∈R(A,,为常数,且A≠0)的周期;函数,(A,ω,为常数,且A≠0)的周期. 对于和来说,对称中心与零点相联系,对称轴与最值点联系. 求函数图像的对称轴与对称中心,只需令与 解出即可.余弦函数可与正弦函数类比可得. 4、由图像确定三角函数的解析式 利用图像特征:,. 要根据周期来求,要用图像的关键点来求. §1.6、三角函数模型的简单应用 1、要求熟悉课本例题. 第三章、三角恒等变换 §3.1.1、两角差的余弦公式 记住15°的三角函数值: §3.1.2、两角和与差的正弦、余弦、正切公式 1、 2、 3、 4、 5、. 6、. §3.1.3、二倍角的正弦、余弦、正切公式 1、, 变形:. 2、 . 变形如下: 升幂公式: 降幂公式: 3、. 4、 §3.2、简单的三角恒等变换 注意正切化弦、平方降次. 2、辅助角公式 (其中辅助角所在象限由点的象限决定,). 第二章:平面向量 §2.1.1、向量的物理背景与概念 1、了解四种常见向量:力、位移、速度、加速度. 2、既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示 1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度. 2、向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量. 3、方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量 1、长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义 1、三角形加法法则和平行四边形加法法则. 2、≤. §2.2.2、向量减法运算及其几何意义 1、与长度相等方向相反的向量叫做的相反向量. 2、三角形减法法则和平行四边形减法法则. §2.2.3、向量数乘运算及其几何意义 1、规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规定如下: ⑴, ⑵当时,的方向与的方向相同;当时,的方向与的方向相反. 2、平面向量共线定理:向量与共线,当且仅当有唯一一个实数,使. §2.3.