预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共32页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Chapter6 ApplicationofInfiniteLabeledGraphs toSymbolicDynamicalSystems KengoMatsumoto AbstractWeapplyatheoryofinfinitelabeledgraphstostudyingpresentations andclassificationsofsymbolicdynamicalsystems,byintroducingaclassofinfinite labeledgraphs,called-graphsystems.Itsmatrixpresentationiscalledasymbolic matrixsystem.Thenotionsofa-graphsystemandsymbolicmatrixsystemare generalizednotionsofafinitelabeledgraphandsymbolicmatrixforsoficsub- shiftstogeneralsubshifts.Strongshiftequivalenceandshiftequivalencebetween symbolicmatrixsystemsareformulatedsothattwosubshiftsaretopologically conjugateifandonlyiftheassociatedcanonicalsymbolicmatrixsystemsare strongshiftequivalent.Weconstructseveralkindsofshiftequivalenceinvariants forsymbolicmatrixsystems.Theyarethedimensiongroups,theK-groups,and theBowen–Franksgroupsthataregeneralizationsofthecorrespondingnotionsfor nonnegativematrices.Theyyieldtopologicalconjugacyinvariantsofsubshifts.The entropicquantitiescalled-entropyandvolumeentropyfor-graphsystemsare alsostudiedrelatedtothetopologicalentropyofsymbolicdynamics. KeywordsSubshiftsSymbolicdynamics-GraphsystemsStrongshift equivalenceBowen–FranksgroupK-theoryTopologicalentropy MSC2000:Primary37B10;Secondary28D20,46L80 6.1Introduction Graphtheoryhasintersectionswithotherbranchesofmathematics.Thetheoryof symbolicdynamicsisoneofthem.Ithassignificantusesforcodingtheoryand formallanguagetheoryininformationsciences.Theclassofsymbolicdynami- calsystemsisabasicpartoftopologicaldynamicalsystems.Graph-theoretical K.Matsumoto() DepartmentofMathematics,JoetsuUniversityofEducation,Joetsu943-8512,Japan e-mail:kengo@juen.ac.jp M.Dehmer(ed.),StructuralAnalysisofComplexNetworks,137 DOI10.1007/978-0-8176-4789-66,cSpringerScience+BusinessMedia,LLC2011 138K.Matsumoto techniquesandlinearalgebraictechniquesareveryusefultostudysymbolic Z dynamicalsystems.QLet˙beafiniteset,calledanalphabet.Let˙betheinfinite 1˙˙˙ productspacesiD1iwhereiD,endowedwiththeproducttopology. Z Thetransformationon˙g