预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共75页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第八章条件异方差模型一、自回归条件异方差模型 自回归条件异方差(AutoregressiveConditionalHeteroscedasticityModel,ARCH)模型是特别用来建立条件方差模型并对其进行预测的。 ARCH模型是1982年由恩格尔(Engle,R.)提出,并由博勒斯莱文(Bollerslev,T.,1986)发展成为GARCH(GeneralizedARCH)——广义自回归条件异方差。这些模型被广泛的应用于经济学的各个领域。尤其在金融时间序列分析中。 按照通常的想法,自相关的问题是时间序列数据所特有,而异方差性是横截面数据的特点。但在时间序列数据中,会不会出现异方差呢?会是怎样出现的?恩格尔和克拉格(Kraft,D.,1983)在分析宏观数据时,发现这样一些现象:时间序列模型中的扰动方差稳定性比通常假设的要差。恩格尔的结论说明在分析通货膨胀模型时,大的及小的预测误差会大量出现,表明存在一种异方差,其中预测误差的方差取决于后续扰动项的大小。从事于股票价格、通货膨胀率、外汇汇率等金融时间序列预测的研究工作者,曾发现他们对这些变量的预测能力随时期的不同而有相当大的变化。预测的误差在某一时期里相对地小,而在某一时期里则相对地大,然后,在另一时期又是较小的。这种变异很可能由于金融市场的波动性易受谣言、政局变动、政府货币与财政政策变化等等的影响。从而说明预测误差的方差中有某种相关性。 为了刻画这种相关性,恩格尔提出自回归条件异方差(ARCH)模型。ARCH的主要思想是时刻t的ut的方差(=t2)依赖于时刻(t1)的残差平方的大小,即依赖于ut2-1。(一)ARCH模型 为了说得更具体,让我们回到k-变量回归模型: (9.1.1) 并假设在时刻(t1)所有信息已知的条件下,扰动项ut的分布是: ~(9.1.2) 也就是,ut遵循以0为均值,(0+1u2t-1)为方差的正态分布。 由于(9.1.2)中ut的方差依赖于前期的平方扰动项,我们称它为ARCH(1)过程: 然而,容易加以推广。例如,一个ARCH(p)过程可以写为: (9.1.3) 如果扰动项方差中没有自相关,就会有 H0: 这时 从而得到误差方差的同方差性情形。 恩格尔曾表明,容易通过以下的回归去检验上述虚拟假设: (9.1.4) 其中,ût表示从原始回归模型(9.1.1)估计得到的OLS残差。(二)GARCH(1,1)模型 常常有理由认为ut的方差依赖于很多时刻之前的变化量(特别是在金融领域,采用日数据或周数据的应用更是如此)。这里的问题在于,我们必须估计很多参数,而这一点很难精确的做到。但是如果我们能够意识到方程(6.1.3)不过是t2的分布滞后模型,我们就能够用一个或两个t2的滞后值代替许多ut2的滞后值,这就是广义自回归条件异方差模型(generalizedautoregressiveconditionalheterosce-dasticitymodel,简记为GARCH模型)。在GARCH模型中,要考虑两个不同的设定:一个是条件均值,另一个是条件方差。在标准化的GARCH(1,1)模型中: (9.1.5) (9.1.6) 其中:xt是1×(k+1)维外生变量向量,是(k+1)×1维系数向量。(9.1.5)中给出的均值方程是一个带有误差项的外生变量函数。由于t2是以前面信息为基础的一期向前预测方差,所以它被称作条件方差。(6.1.6)中给出的条件方差方程是下面三项的函数: 1.常数项(均值): 2.用均值方程(6.1.5)的残差平方的滞后来度量从前期得到的波动性的信息:ut2-1(ARCH项)。 3.上一期的预测方差:t2-1(GARCH项)。 GARCH(1,1)模型中的(1,1)是指阶数为1的GARCH项(括号中的第一项)和阶数为1的ARCH项(括号中的第二项)。一个普通的ARCH模型是GARCH模型的一个特例,即在条件方差方程中不存在滞后预测方差t2的说明。在EViews中ARCH模型是在误差是条件正态分布的假定下,通过极大似然函数方法估计的。例如,对于GARCH(1,1),t时期的对数似然函数为: (9.1.7) 其中 (9.1.8) 这个说明通常可以在金融领域得到解释,因为代理商或贸易商可以通过建立长期均值的加权平均(常数),上期的预期方差(GARCH项)和在以前各期中观测到的关于变动性的信息(ARCH项)来预测本期的方差。如果上升或下降的资产收益出乎意料地大,那么贸易商将会增加对下期方差的预期。这个模型还包括了经常可以在财务收益数据中看到的变动组,在这些数据中,收益的巨大变化可能伴随着更进一步的巨大变化。2.设vt=ut2t2。用其替代方差方程(9.1.6)中的方差并整理,得到关于平方误差的模型: (9.1