一 一点的应力状态与应力张量.doc
kp****93
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一 一点的应力状态与应力张量.doc
一一点的应力状态与应力张量二主应力与应力不变量对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P点处应力状态在直角坐标系可表示为如图1-1所示。在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。通常,我们称这种具有特定变换关系的一些量为张量。式(1-1)就是应力张量,它是二阶张量。因为它具有=,=,=。已知物体内某点P的九个应力分量,则可求过该点的任意倾斜面上的应力。在P点处取出一无限小四面体oabc(图1-2)它的三个面分别与x,y,z三个轴
一 一点的应力状态与应力张量 (2).doc
一一点的应力状态与应力张量二主应力与应力不变量对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P点处应力状态在直角坐标系可表示为如图1-1所示。在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。通常,我们称这种具有特定变换关系的一些量为张量。式(1-1)就是应力张量,它是二阶张量。因为它具有=,=,=。已知物体内某点P的九个应力分量,则可求过该点的任意倾斜面上的应力。在P点处取出一无限小四面体oabc(图1-2)它的三个面分别与x,y,z三个轴
一一点的应力状态与应力张量.doc
一一点的应力状态与应力张量二主应力与应力不变量对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P点处应力状态在直角坐标系可表示为如图1-1所示。在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。通常,我们称这种具有特定变换关系的一些量为张量。式(1-1)就是应力张量,它是二阶张量。因为它具有=,=,=。已知物体内某点P的九个应力分量,则可求过该点的任意倾斜面上的应力。在P点处取出一无限小四面体oabc(图1-2)它的三个面分别与x,y,z三个轴
已知一点的应力状态MPa.doc
第一章已知一点的应力状态MPa,试求该应力空间中的斜截面上的正应力和切应力为多少?解:若平面方程为Ax+By+Cz+D=0,则方向余弦为:,,因此:,;Sx=σxl+τxym+τxzn=Sy=τxyl+σym+τzyn=Sz=τxzl+τyzm+σzn=1-11已知OXYZ坐标系中,物体内某点的坐标为(4,3,-12),其应力张量为:,求出主应力,应力偏量及球张量,八面体应力。解:=100+50-10=140=100×50+50×(-10)+100×(-10)-402-(-
应力张量认识(一).doc
。-可编辑修改-HYPERLINK"http://skyway.eu.org/?p=557"\o"应力张量的认识(一)"应力张量的认识(一)本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到后来逐渐认识的过程。相关还有:HYPERLINK"http://skyway.eu.org/?p=531"\o"Levy-Mises理论的思考"Levy-Mises理论的思考从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本