预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共43页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二章 2.1 >x<-c(1,2,3);y<-c(4,5,6) >e<-c(1,1,1) >z<-2*x+y+e;z [1]71013 >z1<-crossprod(x,y);z1 [,1] [1,]32 >z2<-outer(x,y);z2 [,1][,2][,3] [1,]456 [2,]81012 [3,]121518 2.2 (1) >A<-matrix(1:20,nrow=4);B<-matrix(1:20,nrow=4,byrow=T) >C<-A+B;C (2)>D<-A%*%B;D (3)>E<-A*B;E (4)>F<-A[1:3,1:3] (5)>G<-B[,-3] 2.3 >x<-c(rep(1,5),rep(2,3),rep(3,4),rep(4,2));x 2.4 >H<-matrix(nrow=5,ncol=5) >for(iin1:5) +for(jin1:5) +H[i,j]<-1/(i+j-1) (1)>det(H) (2)>solve(H) (3)>eigen(H) 2.5 >studentdata<-data.frame(姓名=c('张三','李四','王五','赵六','丁一') +,性别=c('女','男','女','男','女'),年龄=c('14','15','16','14','15'), +身高=c('156','165','157','162','159'),体重=c('42','49','41.5','52','45.5')) 2.6 >write.table(studentdata,file='student.txt') >write.csv(studentdata,file='student.csv') 2.7 count<-function(n) { if(n<=0) print('要求输入一个正整数') else{ repeat{ if(n%%2==0) n<-n/2 else n<-(3*n+1) if(n==1)break } print('运算成功')} } 第三章 3.1 首先将数据录入为x。利用data_outline函数。如下 >data_outline(x) 3.2 >hist(x,freq=F) >lines(density(x),col='red') >y<-min(x):max(x) >lines(y,dnorm(y,73.668,3.9389),col='blue') >plot(ecdf(x),verticals=T,do.p=F) >lines(y,pnorm(y,73.668,3.9389)) >qqnorm(x) >qqline(x) 3.3 >stem(x) >boxplot(x) >fivenum(x) 3.4 >shapiro.test(x) >ks.test(x,'pnorm',73.668,3.9389) One-sampleKolmogorov-Smirnovtest data:x D=0.073,p-value=0.6611 alternativehypothesis:two-sided Warningmessage: Inks.test(x,"pnorm",73.668,3.9389): tiesshouldnotbepresentfortheKolmogorov-Smirnovtest 这里出现警告信息是因为ks检验要求样本数据是连续的,不允许出现重复值 3.5 >x1<-c(2,4,3,2,4,7,7,2,2,5,4);x2<-c(5,6,8,5,10,7,12,12,6,6);x3<-c(7,11,6,6,7,9,5,5,10,6,3,10) >boxplot(x1,x2,x3,names=c('x1','x2','x3'),vcol=c(2,3,4)) >windows() >plot(factor(c(rep(1,length(x1)),rep(2,length(x2)),rep(3,length(x3)))),c(x1,x2,x3)) 3.6 >rubber<-data.frame(x1=c(65,70,70,69,66,67,68,72,66,68), +x2=c(45,45,48,46,50,46,47,43,47,48),x3=c(27.6,30.7,31.8,32.6,31.0,31.3,37.0,33.6,33.1,34.2)) >plot(rubber) 具体有相关关系的两个变量的散点图要么是从左下角到右上角(正相关),要么是从左上角到右下角(负相关)。从上图可知所有的图中偶读没有这样的趋势,故均不相关。 3.7 (1)>student<-read.csv('3.7.csv') >at