预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2021-2022中考数学模拟试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为() A. B. C. D. 2.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为() A.1 B. C.2 D.2 3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是() A.1 B.2 C.3 D.4 4.北京故宫的占地面积达到720000平方米,这个数据用科学记数法表示为() A.0.72×106平方米 B.7.2×106平方米 C.72×104平方米 D.7.2×105平方米 5.估算的值在() A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间 6.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是() A. B. C. D. 7.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是() A. B. C. D. 8.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是() A. B. C. D. 9.如图,,则的度数为() A.115° B.110° C.105° D.65° 10.计算的结果是() A.a2 B.-a2 C.a4 D.-a4 11.二次函数y=-x2-4x+5的最大值是() A.-7 B.5 C.0 D.9 12.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为() A.3×109 B.3×108 C.30×108 D.0.3×1010 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米. 14.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?” 题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺) 如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为. 15.因式分解:x2﹣10x+24=_____. 16.因式分解:4x2y﹣9y3=_____. 17.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______. 18.分解因式:4m2﹣16n2=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF. (1)求证:FH=ED; (2)当AE为何值时,△AEF的面积最大? 20.(6分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上. (1)求反比例函数y=的表达式; (2)在x轴上是否存在一点P,使得S△AOP=S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由. 21.(6分)如图1,在平面