预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第页(共NUMPAGES28页) 2018年湖北省黄冈市中考数学试卷 一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)(2018•黄冈)﹣23的相反数是() A.﹣32 B.﹣23 C.23 D.32 2.(3分)(2018•黄冈)下列运算结果正确的是() A.3a3•2a2=6a6 B.(﹣2a)2=﹣4a2 C.tan45°=22 D.cos30°=32 3.(3分)(2018•黄冈)函数y=x+1x-1中自变量x的取值范围是() A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1 4.(3分)(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为() A.50° B.70° C.75° D.80° 5.(3分)(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=() A.2 B.3 C.4 D.23 6.(3分)(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为() A.﹣1 B.2 C.0或2 D.﹣1或2 二、填空题(本题共8小题,每题小3分,共24分 7.(3分)(2018•黄冈)实数16800000用科学记数法表示为. 8.(3分)(2018•黄冈)因式分解:x3﹣9x=. 9.(3分)(2018•黄冈)化简(2﹣1)0+(12)﹣2﹣9+3-27=. 10.(3分)(2018•黄冈)则a﹣1a=6,则a2+1a2值为. 11.(3分)(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=. 12.(3分)(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为. 13.(3分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计). 14.(3分)(2018•黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为. 三、解答题(本题共10题,满分78分(x-2)≤8 15.(5分)(2018•黄冈)求满足不等式组&x-3(x-2)≤8&12x-1<3-32x的所有整数解. 16.(6分)(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克. 17.(8分)(2018•黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题: 图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”. (1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为; (2)补全条形统计图; (3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人; (4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率. 18.(7分)(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C. (1)求证:∠CBP=∠ADB. (2)若OA=2,AB=1,求线段BP的长. 19.(6分)(2018•黄冈)如图,反比例函数y=kx(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B. (1)求k的值与B点的坐标; (2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标. 20.(8分)(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE. (1)求证△ABF≌△EDA; (2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC. 21.(7分)(2018•黄冈)如图,在大楼AB正前