预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1相控阵超声聚焦和偏转 3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phasedelay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 (a)μ=8时,旁瓣随N变化曲线(b)μ=16时,旁瓣随μ变化曲线 图3-2旁瓣与N、μ关系图 近来采用数字延时来代替原来的模拟延时。数字延时精度高、控制方便、稳定性好,可以大大提高相控阵超声成像质量。数字延时的实现可以分成粗延时和细延时,粗延时一般基于采样时钟计数,延时值为采样周期的整数倍,而采样周期通常为几十纳秒以上。细延时量为采样周期的小数倍,一般能达到10ns以内的延时分辨率。 实现数字粗延时比较简单,但是实现细延时比较困难。目前有几种方法实现细延时:一种是流水线式采样延迟聚焦,其延时分辨率一般大于10ns。另一种方法是采用数据做时域内插,获得N倍密集的输出序列从而减小量化延时,这需要很高的运算量和存储器支持。即便如此,延时量化误差仍然不够小。有人采用坐标变换的CORDIC算法实现采样序列的相位旋转。也有人提出基于多种速率数字信号处理技术的多相滤波方法,可以实现5ns级精细延时,并且可以把动态变迹技术等一起考虑。还有人提出基于FIR滤波的延时方法,延时精度可达到5ns。 3.2.2动态聚焦 (1)相控聚焦原理 相控发射聚焦原理如图3-3(a)。设阵元中心距为d,阵列换能器孔径为D,聚焦点为P,焦距为f,媒质声速为c。根据几何声程差,可以计算出为使各阵元发射波在P点聚焦,激励信号延迟时间应为 (式3-2) 式中,n----阵元序号; ----为一个足够大的时间常数,目的是为了避免出现负的延迟时间。 接收聚焦如图3-3(b)所示,它是一个和发射聚焦互逆的过程,同样遵守几何聚焦延迟规律。各阵元接收回波信号,按设计的聚焦延迟量进行延迟,然后相加。 (a)发射聚焦(b)接收聚焦 图3-3相控聚焦原理示意图 (2)动态聚焦声束特性 在声场中,聚焦点区域的声束宽度最小,即在焦点附近的有限区域内,聚焦声束宽度小于各阵元同时激励(即不聚焦)时的声束宽度;但在此区域之外,聚焦声束宽度反而扩散开来,大于不聚焦声束宽度,如图3-4所示。 图3-4聚焦深度和焦点直径 对于强聚焦方式,在聚焦深度内聚焦声束变细,可获得优良的侧向分辨率;但聚焦深度很短,焦区以外的声束比未聚焦时发散得更快。为了使相控声束扫描的整个声场范围内都能得到均匀清晰的成像,就要对声场中每一点进行聚焦发射和接收,以便在各点都有连续一致的侧向分辨率。这就要求相控声束能沿扫描线跟踪目标,以形成一个滑动的焦点,并同步改变阵列孔径。 在早期的分段动态聚焦系统中,使发射和接收声束分别在近距离、中距离和远距离聚焦,进行几次成像。在几幅成像中,都只是在各自的焦点附近能得到清晰成像,而在其他区域,由于偏离了焦点使图像模糊。将几幅图像拼合起来,就能得到从近距离到远距离比较均匀、分辨特性较好的成像。这种分段聚焦方式合成一幅清晰图像需要转换几次焦点,因而实时性较差。 在改进的实时分段动态聚焦方式中,在一次声束发射/接收过程