预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN113627537A(43)申请公布日2021.11.09(21)申请号202110925442.7(22)申请日2021.08.12(71)申请人科大讯飞股份有限公司地址230088安徽省合肥市高新区望江西路666号(72)发明人张圆(74)专利代理机构北京集佳知识产权代理有限公司11227代理人柳虹(51)Int.Cl.G06K9/62(2006.01)G06N3/04(2006.01)G06N3/08(2006.01)权利要求书2页说明书16页附图4页(54)发明名称一种图像识别方法、装置、存储介质及设备(57)摘要本申请公开了一种图像识别方法、装置、存储介质及设备,该方法包括:首先获取待识别的目标图像,然后再将其输入至预先构建的图像识别模型,识别得到目标图像的特征向量;其中,图像识别模型是根据神经元的算力进行自适应剪枝,并利用对抗训练和知识蒸馏的方式训练得到的神经网络模型;接着,可以根据该特征向量,对目标图像进行识别,得到目标图像的识别结果。可见,由于本申请预先构建的图像识别模型是利用神经元的算力进行自适应剪枝,从而提高了剪枝效率,并且通过对抗训练和知识蒸馏的训练方式还能够使得该模型有效继承当前主流神经网络模型所包含的知识,并保证其维持着最大化的识别性能效果,进而能够在此情况下,有效提高图像的识别效率。CN113627537ACN113627537A权利要求书1/2页1.一种图像识别方法,其特征在于,包括:获取待识别的目标图像;将所述目标图像输入至预先构建的图像识别模型,识别得到所述目标图像的特征向量;所述图像识别模型是根据神经元的算力进行自适应剪枝,并利用对抗训练和知识蒸馏的方式训练得到的神经网络模型;根据所述目标图像的特征向量,对所述目标图像进行识别,得到所述目标图像的识别结果。2.根据权利要求1所述的方法,其特征在于,所述图像识别模型的构建方式如下:获取样本图像和教师图像识别模型;所述教师图像识别模型是基于样本图像训练得到的神经网络模型;将所述样本图像输入所述教师图像识别模型,得到第一样本特征向量及其所属的第一分类概率;将所述样本图像输入初始学生图像识别模型,得到第二样本特征向量及其所属的第二分类概率;所述初始学生图像识别模型为由所述教师图像识别模型中的神经元与初始比例因子相乘后得到的神经神经网络模型;根据所述第一样本特征向量及其所属的第一分类概率、所述第二样本特征向量及其所属的第二分类概率、以及预设的判别器,利用对抗训练和知识蒸馏的方式,对所述初始学生图像识别模型进行训练,生成学生图像识别模型;根据所述学生图像识别模型的比例因子分布,对所述学生图像识别模型进行剪枝,并将剪枝后的图像识别模型作为最终的图像识别模型。3.根据权利要求2所述的方法,其特征在于,所述根据所述第一样本特征向量及其所属的第一分类概率、所述第二样本特征向量及其所属的第二分类概率、以及预设的判别器,利用对抗训练和知识蒸馏的方式,对所述初始学生图像识别模型进行训练,生成学生图像识别模型,包括:利用所述初始学生图像识别模型中神经元的算力,计算所述初始学生图像识别模型对应的剪枝损失,作为第一目标函数;所述第一目标函数用于优化所述初始学生图像识别模型中神经元对应的比例因子;计算所述第一分类概率和第二分类概率之间的KL散度损失,作为第二目标函数;所述第二目标函数用于提升所述初始学生图像识别模型的输出结果与所述教师图像识别模型的输出结果之间的相似度;计算所述第二分类概率和所述样本图像对应的真实分类结果之间的交叉熵损失,作为第三目标函数;所述第三目标函数用于提升所述初始学生图像识别模型的输出结果与所述样本图像对应的真实分类结果之间的相似度;将所述第一样本特征向量和所述第二样本特征向量输入预设的判别器进行对抗训练,得到二者的对抗损失,作为第四目标函数;所述第四目标函数用于实现所述第一样本特征向量与所述第二样本特征向量的最大化相似;根据所述第一目标函数、第二目标函数、第三目标函数以及第四目标函数对所述初始学生图像识别模型进行训练,生成学生图像识别模型。4.根据权利要求3所述的方法,其特征在于,所述根据所述第一目标函数、第二目标函数、第三目标函数以及第四目标函数对初始学生图像识别模型进行训练,生成学生图像识2CN113627537A权利要求书2/2页别模型,包括:将所述第一目标函数、第二目标函数、第三目标函数以及第四目标函数进行加权求和,并根据所述和值,对所述初始学生图像识别模型进行训练,生成学生图像识别模型。5.根据权利要求2所述的方法,其特征在于,所述根据所述学生图像识别模型的比例因子分布,对所述学生图像识别模型进行剪枝,并将剪枝后的学生图像识别模型作为最终的图像识别模型,包括:根据