预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN113642114A(43)申请公布日2021.11.12(21)申请号202111073571.4(22)申请日2021.09.14(71)申请人吉林大学地址130012吉林省长春市人民大街5988号(72)发明人刘震宫洵曲婷胡云峰陈虹李勇(74)专利代理机构吉林长春新纪元专利代理有限责任公司22100代理人白冬冬(51)Int.Cl.G06F30/15(2020.01)G06F111/04(2020.01)G06F111/08(2020.01)G06F119/14(2020.01)权利要求书2页说明书9页附图9页(54)发明名称可犯错的拟人化随机跟车驾驶行为建模方法(57)摘要一种可犯错的拟人化随机跟车驾驶行为建模方法,属于驾驶员建模技术领域。本发明的目的是解决了跟车场景下拟人化特征提取困难的问题,使得跟车模型具有随机性、“可犯错”机制等拟人化效果的可犯错的拟人化随机跟车驾驶行为建模方法。本发明步骤是:自然行驶数据原始采集,以SPMD数据集作为自然行驶大数据;跟车场景提取,生成跟车轨迹片段数据库;跟车数据预处理;建立一种可犯错的拟人化随机跟车模型。本发明具有计算简单且可移植性强的特点。CN113642114ACN113642114A权利要求书1/2页1.一种可犯错的拟人化随机跟车驾驶行为建模方法,S1、自然行驶数据原始采集,以SPMD数据集作为自然行驶大数据;S2、跟车场景提取,生成跟车轨迹片段数据库;S3、跟车数据预处理;其特征在于:S4、建立一种可犯错的拟人化随机跟车模型;S41、建立与两车距离、速度差、车头距以及前车速度相关的名义驾驶员跟车概率模型,其中名义是指不犯错名义;S411、名义驾驶员跟车模型期望加速度公式如下:32P(R(t))=P3·(R(t))+P2·(R(t))+P1·(R(t))+P0(2)其中:ad(t)为第t时刻期望加速度,R(t)为第t时刻两车车距,Th为车头距,VF为后车车速,P(R(t))为速度差比例增益,P0、P1、P2、P3为系数,该系数从SPMD数据集中标定得到的;其标定的方法为:首先提取跟车数据集中根据不同R(t)的范围分为13类并在不同类内提取两车车速差以及加速度。具体分类为:0<R(t)≤10为一类;10<R(t)≤20为一类;20<R(t)≤30为一类;30<R(t)≤40为一类;40<R(t)≤50为一类;50<R(t)≤60为一类;60<R(t)≤70为一类;70<R(t)≤80为一类;80<R(t)≤90为一类;90<R(t)≤100为一类;100<R(t)≤110为一类;110<R(t)≤120为一类;120<R(t)≤130为一类;针对每一类,通过最小二乘法求出两车车速差与加速度的斜率,然后通过最小二乘法,拟合出公式(2)的系数P0、P1、P2、P3;S412、名义驾驶员跟车模型期望加速度分布公式如下:5432σ(R(t))=Q5·(R(t))+Q4·(R(t))+Q3·(R(t))+Q2·(R(t))+Q1·(R(t))+Q0(3)其中:σ(R(t))为在两车距离为R(t)时期望加速度的标准差;R(t)为第t时刻两车车距;Q0、Q1、Q2、Q3、Q4、Q5为系数,该系数从SPMD数据集中标定得到的,其标定的方法为:首先提取跟车数据集中根据不同R(t)的范围分为13类;13类的具体分类如下:0<R(t)≤10、10<R(t)≤20、20<R(t)≤30、30<R(t)≤40、40<R(t)≤50、50<R(t)≤60、60<R(t)≤70、70<R(t)≤80、80<R(t)≤90、90<R(t)≤100、100<R(t)≤110、110<R(t)≤120、120<R(t)≤130;针对每一类,计算加速度分布的标准差,然后通过最小二乘法,拟合出公式(3)的Q0、Q1、Q2、Q3、Q4、Q5系数;S413、名义驾驶员跟车模型实际加速度公式如下:a(t)=f(ad(t),σ(R(t)))(4)其中:a(t)为名义驾驶员跟车模型实际加速度;f(·)从SPMD数据集中标定得到的加速度概率密度分布;其具体标定方法为:提取不同跟车距离的加速度频率分布直方图,并采用各种概率密度函数进行拟合并选取最切合频率分布直方图的概率密度函数作为公式(4)的概率密度函数;S42、基于抗饱和速度差来描述人类驾驶员感知受限的犯错机制并建立基于感知受限的跟车模型:通过两车相对速度来模拟人类驾驶员感知受限的机制,其公式为:2CN113642114A权利要求书2/2页其中:为第t时刻两车速度差,为第t时刻感知范围率;S43、基于人类驾驶员驾驶过程中注意力分散的情况描述人类驾驶员分心驾驶的犯错机制并建立基于分心驾驶的跟车模型:驾