基于机器学习的疾病预测方法、装置、设备及介质.pdf
宜然****找我
亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于机器学习的疾病预测方法、装置、设备及介质.pdf
本发明涉及人工智能技术领域,揭露一种基于机器学习的疾病预测方法,包括:针对预先收集的用户病例数据进行结构化处理,得到病例样本数据;将病例样本数据输入至神经网络模型中进行训练,得到疾病特征向量、记忆向量以及距离值;在训练过程中,利用距离值不断调整疾病特征向量与记忆向量的比例参数,并根据比例参数所确定用户在各个疾病类别上的特征向量,构建疾病预测模型;响应于疾病预测指令的触发,利用疾病预测模型对目标用户病例数据进行预测,输出目标用户在各个疾病类别上的概率。本发明能够在面向不平衡样本数据的情况,通过在模型训练过程
基于机器学习的疾病分级方法、装置、设备及介质.pdf
本申请公开了一种基于机器学习的疾病分级方法、装置、设备及介质,所述方法属于医学人工智能领域,所述系统包括:获取乳腺超声图像;调用多任务网络对乳腺超声图像进行处理,得到乳腺超声图像的第一特征图和语义分割图,第一特征图包括乳腺超声图像的高层语义特征,语义分割图是对乳腺超声图像中的病灶区域进行语义分割的图;根据语义分割图对第一特征图中的病灶区域和非病灶区域进行不同权重的特征提取,得到第二特征图;根据第二特征图预测得到乳腺超声图像的BI‑RADS分级。本申请采用了具有分类引导的高层语义特征作为主要分级特征,并且引
基于机器学习的疾病分析方法、装置、设备及存储介质.pdf
本发明涉及人工智能技术,揭露了一种基于机器学习的疾病分析方法,包括:获取训练疾病数据以及训练疾病数据对应的真实疾病名称和真实疾病属性;构建训练疾病数据的目标向量相关矩阵,利用疾病分析模型对目标向量相关矩阵计算,得到输出结果;分别利用疾病名称损失函数和属性信息损失函数计算得到输出结果与真实疾病名称的疾病名称损失值和属性信息损失值,并利用联合损失函数计算疾病名称损失值和属性信息损失值,得到联合损失值,根据联合损失值优化所述疾病分析模型;利用优化后的疾病分析模型对待检测数据计算,得到目标疾病分析结果。本发明还提
基于机器学习模型的长势预测方法、装置、设备及介质.pdf
本发明涉及人工智能技术领域,提出一种基于机器学习模型的长势预测方法、装置、设备及介质,该方法通过第一样本数据集训练若干个不同类别的预设基础模型,得到至少两个机器学习模型,将第二样本数据集的第二长势影响向量分别输入各机器学习模型,以确定各机器学习模型对应的总识别准确率和长势识别准确率,将目标长势影响向量分别输入各机器学习模型得到若干个目标预测长势,根据各目标预测长势、总识别准确率和长势识别准确率确定目标长势影响向量所对应的最终预测长势及最终预测长势可信度。本发明还提出一种基于机器学习模型的长势预测装置、设备
基于机器学习的疾病预测方法及装置.pdf
本发明涉及人工智能技术领域,揭露一种基于机器学习的疾病预测方法,包括:获取样本用户的文本病例信息,并将样本用户的文本病例信息形成文本信息组合,将文本信息组合输入至包括文本编码器和因果分辨模块的网络模型中进行训练,文本编码器用于提取文本信息组合的向量表示,以及根据文本信息组合的向量表示进行疾病类别预测,因果矫正模块用于对文本信息组合中不同疾病症状之间的差异化字符进行预测,使用训练后的文本编码器构建疾病预测模型,利用疾病预测模型对目标用户的文本病例信息进行预测,输出目标用户对应的疾病类别。本发明能够针对疾病预