预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:-财政用于农业的支出的比重,-第二、三产业从业人数占全社会从业人数的比重,-非农村人口比重,-乡村从业人员占农村人口的比重,-农业总产值占农林牧总产值的比重,-农作物播种面积,—农村用电量。 yx2x3x4x5x6x7x8年份78年可比价比重%%比重比重千公顷亿千瓦时1986133.6013.4329.5017.9236.0179.99150104.07253.101987137.6312.2031.3019.3938.6275.63146379.53320.801988147.867.6637.6023.7145.9069.25143625.87508.901989196.769.4239.9026.2149.2362.75146553.93790.501990220.539.9839.9026.4149.9364.66148362.27844.501991223.2510.2640.3026.9450.9263.09149585.80963.201992233.1910.0541.5027.4651.5361.51149007.101106.901993265.679.4943.6027.9951.8660.07147740.701244.901994335.169.2045.7028.5152.1258.22148240.601473.901995411.298.4347.8029.0452.4158.43149879.301655.701996460.688.8249.5030.4853.2360.57152380.601812.701997477.968.3050.1031.9154.9358.23153969.201980.101998474.0210.6950.2033.3555.8458.03155705.702042.201999466.808.2349.9034.7857.1657.53156372.812173.452000466.167.7550.0036.2259.3355.68156299.852421.302001469.807.7150.0037.6660.6255.24155707.862610.782002468.957.1750.0039.0962.0254.51154635.512993.402003476.247.1250.9040.5363.7250.08152414.963432.922004499.399.6753.1041.7665.6450.05153552.553933.032005521.207.2255.2042.9967.5949.72155487.734375.70资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews软件进行最小二乘估计,估计结果如下表所示: DependentVariable:YMethod:LeastSquaresSample:19862004Includedobservations:19VariableCoefficientStd.Errort-StatisticProb.C-1102.373375.8283-2.9331840.0136X1-6.6353933.781349-1.7547690.1071X318.229422.0666178.8208990.0000X42.4300398.3703370.2903160.7770X5-16.237375.894109-2.7548470.0187X6-2.1552082.770834-0.7778190.4531X70.0099620.0023284.2788100.0013X80.0633890.0212762.9793480.0125R-squared0.995823Meandependentvar345.5232AdjustedR-squared0.9