情绪分类方法和情绪分类模型的训练方法、装置及设备.pdf
是立****92
亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
情绪分类方法和情绪分类模型的训练方法、装置及设备.pdf
本公开提供了一种情绪分类方法,涉及人工智能领域,具体涉及深度学习领域和图像处理领域。情绪分类方法的具体实现方案为:确定视频帧序列中第一目标对象的第一生理信号;基于第一生理信号,确定视频帧序列中的第一目标视频帧,其中,第一目标视频帧中第一目标对象的第一生理信号的变化满足预定变化条件;基于第一目标视频帧,确定针对第一目标对象的第一情绪分类信息;基于第一情绪分类信息,确定第一目标对象的情绪类别。
分类模型训练方法、装置、情绪数据分类方法及相关设备.pdf
本公开实施例提供一种分类模型训练方法、装置、情绪数据分类方法、电子设备及计算机可读介质,分类模型训练方法包括:获取当前批次训练样本和当前批次训练样本的标签;通过待训练模型对当前批次训练样本进行处理,获得当前批次训练样本的预测向量;根据当前批次训练样本的预测向量和当前批次训练样本的标签生成第一损失函数;根据当前批次训练样本中具有相同的标签的训练样本的预测向量生成第二损失函数;根据第一损失函数和第二损失函数调整待训练模型的参数,将训练完成的待训练模型确定为目标分类模型。本公开实施例提供的技术方案,能够在不改变
跨域文本情绪分类模型的训练方法和分类方法.pdf
本发明提供一种跨域文本情绪分类模型的训练方法和分类方法,训练方法包括:获取源域和目标域的文本数据,进行预处理得到词向量,并分为训练集和测试集;通过双向门限循环单元网络模型和自注意力机制提取训练集中的文本特征;在损失函数的约束下,根据文本特征分别同时训练第一神经网络模型、第二神经网络模型直至收敛;其中,根据互信息,构建第一神经网络模型的损失函数,并采用梯度反转实现第二神经网络模型和特征提取器的对抗学习训练;根据测试集中的词向量,得到跨域文本情绪分类模型。本发明能够有效将未标注的文本数据集进行分类,能够将其他
分类检测模型训练方法和装置、分类检测方法和装置.pdf
本公开提供一种分类检测模型训练方法和装置、分类检测方法和装置。分类检测模型训练装置对恶意样本APK进行反编译,以得到目标文件,并从目标文件中提取出静态特征;利用沙箱工具从恶意样本APK中提取出动态特征;利用静态特征和动态特征生成训练数据集;利用预设的特征选取模型从训练数据集中提取出第一特征样本集合;利用第一特征样本集合对预设分类器进行训练,以得到经过训练的分类检测模型。从而利用所得到的分类检测模型对待检测APK进行分类检测。本公开在无需人工干预的情况下有效克服分类检测效率低、准确度低的问题。
分类模型的训练方法和装置.pdf
本说明书实施例提供一种分类模型的训练方法和装置。方法包括:获取第一领域的第一样本集合,包括多个第一训练样本,每个第一训练样本包括样本输入和对应的第一分类任务的类别标签;获取第二领域的第二样本集合,包括多个第二训练样本,每个第二训练样本包括样本输入和对应的第二分类任务的类别标签;两个分类任务的类别标签具有映射关系;将第二样本集合中的多个第二训练样本加入第一样本集合,并根据映射关系,将第二训练样本包括的第二分类任务的类别标签转换为第一分类任务的类别标签,得到第三样本集合;将第三样本集合中的样本输入输入待训练的