预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN113837131A(43)申请公布日2021.12.24(21)申请号202111150695.8G06N3/08(2006.01)(22)申请日2021.09.29(71)申请人南京邮电大学地址210003江苏省南京市鼓楼区新模范马路66号(72)发明人韩崇韩磊王菁孙力娟郭剑王娟陈入钰相亚杉(74)专利代理机构南京正联知识产权代理有限公司32243代理人张玉红(51)Int.Cl.G06K9/00(2006.01)G06K9/46(2006.01)G06K9/62(2006.01)G06N3/04(2006.01)权利要求书3页说明书7页附图3页(54)发明名称一种基于FMCW毫米波雷达的多尺度特征融合手势识别方法(57)摘要一种基于FMCW毫米波雷达的多尺度特征融合手势识别方法,采用密度聚类算法对雷达目标的点迹进行处理,有效剔除异常点和无效点,抑制了杂波和噪声,利于提取手势运动特征;采用了信号截取和密度聚类算法的处理,大大减少了数据运算,便于集成在能耗低、体积小的高速处理芯片上;对处理过的距离‑角度图以及距离‑多普勒图进行多尺度变换,提取手掌和手指特征,兼顾手掌整体动作识别的同时,还关注手指的细微动作。融合距离、角度、速度手势运动信息,一定程度上提高了手势识别的准确度和精度。CN113837131ACN113837131A权利要求书1/3页1.一种基于FMCW毫米波雷达的多尺度特征融合手势识别方法,其特征在于:具体包含以下步骤:步骤1,FMCW毫米波雷达系统初始化,配置手势采样的参数,包括收发天线对、采样点数、采样时间;步骤2,FMCW毫米波雷达平台对不同手势动作进行采样,获得原始手势回波数据S(m)=[S1(m),S2(m),…,SN(m)],其中m,N分别代表毫米波雷达平台设置的采样点数和通道数,原始手势回波信号S(m)由采样点数m和通道数N构成二维矩阵;步骤3,对原始手势回波数据S(m)进行截取筛选,雷达回波信号往往会有较强的杂波,例如静态物体反射、墙体多径,根据手势识别的特性设定相应的手势范围0‑1m,使范围内的手势信号得到显现,范围外的杂波得到剔除,获得有效手势数据SH(m);步骤4,对有效手势数据SH(m)进行动态信号处理,首先对信号进行杂波抑制,防止噪声和杂波对手势信号提取的干扰,然后在距离‑角度维上做傅里叶变换FFT形成距离‑角度图RAI,在距离‑速度维上做傅里叶变换FFT形成距离‑多普勒图RDI;步骤5,基于DBSCAN密度聚类算法对RAI中的雷达目标点迹进行处理,选取点最多的一个簇,也就是手势轨迹的主体,去掉了无用点,同时减少数据量;步骤6,将RDI和DBSCAN处理完的RAI进行尺度变换,缩放得到不同尺寸的图像RDI’、RAI’,在CNN中有不同的卷积层,将不同尺寸的特征图输入到不同的卷积层中,实现多尺度特征提取;步骤7,RDI和RAI在经过CNN提取特征后得到了两个都为1*64的特征向量记为FRDI和FRAI,将FRDI和FRAI进行特征融合,形成一个2*64的新特征融合图Ffusion;步骤8,Ffusion作为长短期记忆网络LSTM的输入,利用其记忆单元建立手势序列前后信息之间的联系,保留了融合特征在每一步之间的联系,生成最终的时序特征向量T,大小为1*64;步骤9,LSTM提取的时序特征向量T输出到全连接层,映射到数据样本标记空间D;步骤10,最后通过Softmax函数得到概率p,根据最大概率p得到多尺度特征融合后对应的手势类别。2.根据权利要求1所述的一种基于FMCW毫米波雷达的多尺度特征融合手势识别方法,其特征在于:步骤2中,通过FMCW毫米波雷达采集动态手势回波原始信号,设每个调频连续脉冲chirp的周期为t,S为频率增长斜率,τ为信号从雷达到手势然后返回的延迟,f为雷达的载波频率;雷达的发射信号X1表示为:X1=sin(2πft+πSt·t)接收信号X2为:X2=sin[2πf(t‑τ)+πS(t‑τ)2]经过混频器和低通滤波器后,输出的中频信号X为:对上式进行一维傅里叶变换得到中频信号的频率为fIF,设手势目标到雷达的距离为d,光速为c,由公式2CN113837131A权利要求书2/3页得所探测目标的距离d为:上述是对一个线性调频脉冲chirp的处理过程,对连续多个chirp进行相同的处理然后拼接成一帧数据。3.根据权利要求1所述的一种基于FMCW毫米波雷达的多尺度特征融合手势识别方法,其特征在于:步骤4中,假设一个物体以v的速度运动,为了识别运动目标,雷达以Tc为间隔连续发送两个chrip信号,则到达接收端两个chrip信号的相位差ω与移动速度v相关为:其中λ为调频信号的波长;距离‑多普勒图RDI即可通