一种基于改进FCOS的人脸口罩检测系统及方法.pdf
秀美****甜v
亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于改进FCOS的人脸口罩检测系统及方法.pdf
本发明公开了一种基于改进FCOS的人脸口罩检测系统及方法,涉及目标检测技术领域。系统包括特征提取模块、包括自顶向下特征融合模块和自底向上特征融合模块的特征融合模块、预测模块。方法包括:将捕获的视频流分解成逐张图像输入系统;特征提取模块从输入图像中提取卷积神经网络的至少任意两个阶段输出的特征图;自顶向下特征融合模块使用特征金字塔网络对从骨干网提取的特征图进行自顶向下特征融合;自底向上特征融合模块使用PAN模块对自顶向下特征融合模块输出特征图进行自底向上特征融合;预测模块使用全卷积神经网络在特征融合模块输出的
基于改进FCOS的道路场景多类别检测方法及系统.pdf
一种基于改进FCOS的道路场景多类别检测方法,包括:首先对KITTI数据集预处理,将原本九个类别合并为三类;其次,提出跨尺度改进策略,新增P2层,放大最低层特征,并融合P3层语义信息;然后融合特征退化策略和重检测策略,以加深目标特征理解;提出IOU‑better策略,在用于边框回归的特征图上使用IOU预测网络替代Center‑ness网络;最后提出参数共享策略,通过共享head网络部分卷积层的特征提升算法实时性。
一种基于FCOS改进的车辆检测算法.pdf
本发明提出一种基于FCOS改进的车辆检测算法,所述车辆检测算法包括:对FCOS模型进行改进,在标准骨干网络backbone中引入了可变形卷积网络Defomableconvolutionnetwork,使之能够随着目标的形变来改变感受野的位置,以达到更好的检测效果,同时加入了抑制因子,强迫网络学习主要的特征而忽略那些背景噪音区域;将neck模块的特征图金字塔网络FPN后添加一个自底向上的信息通路,减少传播过程信息的损耗;在之后根据平衡原则引入平衡模块,降低因不同特征图featuremap方差不匹配而造
一种基于改进的MTCNN人脸检测方法.pdf
本发明公开了一种基于改进的MTCNN的人脸检测方法。我们首先在通过一种使用生成对抗网络的超分辨率技术——SRGAN,将低像素图像转换为高像素图像,SRGAN使用反学习方法,结合像素均方误差、VGG高维特征均方误差和针对训练损失的深度卷积网络来实现超分辨率恢复。在原有MTCNN网络结构中创新性地引入了InceptionV2网络结构,提高了网络的学习性能,既保留了原有网络结构的优点,又进一步提高了人脸检测算法的效率和准确性。该模块通过对特征图进行三种不同的卷积(1×1,3×3,5×5)来提取更多的特征。不同的
一种基于深度学习的人脸口罩佩戴检测方法.pdf
本发明公开了一种基于深度学习的人脸口罩佩戴检测方法,包括如下步骤:S1、数据准备并制作训练集;S2、构建YOLOV4目标检测模型;S3、人脸口罩佩戴检测模型进行视频流实时检测;S4、通过YOLOV4的特征提取网络,提取三个特征层,三个特征层的预测结果分别对应三个边界框的位置;通过先验框对边界框的预测与回归,就可以获得多个边界框的信息,通过非极大值抑制算法,保留置信分最高的边界框作为目标的检测框,从而确定检测框的最终位置,检测识别未佩戴口罩人员。本发明实现了对佩戴口罩和未佩戴口罩人员的检测识别,通过采用YO