分类网络模型的训练方法、装置以及电子设备.pdf
靖烟****魔王
亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
分类网络模型的训练方法、装置以及电子设备.pdf
本申请提供分类网络模型的训练方法、装置、电子设备以及计算机存储介质。其中该方法包括:获得客户端提供的用于监督训练的第一样本数据;基于第一样本数据,获得监督训练参数;监督训练参数用于监督训练初始分类网络模型;获得客户端提供的第二样本数据;其中,第二样本数据为用于训练初始分类网络模型的小样本数据;利用监督训练参数与第二样本数据训练初始分类网络模型,获得目标分类网络模型。由于本申请的分类网络模型的训练方法,首先是通过第一样本数据,获得监督训练参数。之后,结合监督训练参数,利用小样本数据的第二样本数据对初始分类网
分类模型的训练方法、装置、电子设备以及存储介质.pdf
本发明公开了一种分类模型的训练方法、装置、电子设备以及存储介质,属于人工智能技术领域。该方法包括:通过初始模型的目标分类分支,对样本图像进行处理得到分类损失值;所述目标分类分支用于预测样本图像中目标对象的目标分类结果;通过初始模型的样本识别分支,对所述样本图像进行处理得到识别损失值;所述样本识别分支用于预测样本图像中目标对象的样本识别结果;通过初始模型的权重调节分支,对所述样本图像进行处理,得到对所述目标分类分支和所述样本识别分支进行权重调节的损失权重;根据所述分类损失值、所述识别损失值和所述损失权重,对
分类模型训练方法以及装置.pdf
本说明书实施例提供分类模型训练方法以及装置,其中所述分类模型训练方法包括:获取训练样本数据以及目标样本标签,并根据所述训练样本数据以及所述目标样本标签训练获得中间分类器,其中,所述训练样本数据包括目标项目的历史待审核项目数据,将所述训练样本数据及所述目标样本标签输入所述中间分类器,获得所述训练样本数据对应的样本测试结果,根据所述样本测试结果,确定所述训练样本数据的训练样本标签,根据所述训练样本数据以及所述训练样本标签,训练获得目标分类模型,其中,所述目标分类模型用于对所述目标项目的待审核项目数据进行分类,
神经网络模型的并行训练方法、装置以及电子设备.pdf
本发明提供了一种神经网络模型的并行训练方法包括:对目标神经网络模型进行分割,得到所述目标神经网络模型的块结构;当对所述目标神经网络模型进行训练时,对所述张量信息的状态变化进行监测;根据所述张量信息的状态变化,确定所述目标神经网络模型的块结构的状态;响应于所述目标神经网络模型的块结构的状态,通过所述块结构的驱逐策略,对不同块结构对应的目标神经网络模型的参数的存储位置进行调整,本发明还提供了神经网络模型的并行训练装置、电子设备及存储介质。本发明能够使实现对目标神经网络模型并行进行训练。
分类模型训练方法、分类方法、装置、设备以及介质.pdf
本发明实施例公开了一种分类模型训练方法、分类方法、装置、设备以及介质。该方法包括:在初始样本数据中确定当前次迭代的第一抽样样本数据和第二抽样样本数据,其中,所述第一抽样样本数据为首次迭代中预设数量的随机抽样数据或上一次迭代中第一抽样样本数据和第二抽样样本数据的合集,各次迭代中的第二抽样样本数据的分类结果基于对应的第一抽样样本数据的分类结果确定;基于所述第一抽样样本数据和第二抽样样本数据,以及各样本数据的分类结果对当前分类模型进行训练,并得到当前次迭代更新后的分类模型,得到训练后的目标分类模型。通过本发明实