

一种基于小目标特征增强的交通标志检测方法.pdf
是你****盟主
亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于小目标特征增强的交通标志检测方法.pdf
本发明公开了一种基于小目标特征增强的交通标志检测方法,主要包括以下步骤:构建交通标志数据集并进行数据增强;针对数据集中检测目标尺寸小,使用K‑means++聚类算法得到先验框并且使用非线性的聚类距离;根据数据集中显现的小目标居多的问题针对性的对网络结构进行优化;根据数据正负样本失衡严重的问题针对性的优化算法的损失函数,实现对目标的动态加权。本发明是在城市街景场景中实现交通标志检测,通过对算法的网络结构以及损失函数等改进,增强目标的细粒度特征等,可实现小目标检测召回与精度的提升,此方法对小尺寸居多的交通标志
一种基于增强特征提取的小目标检测方法.pdf
本发明公开了一种基于增强特征提取的小目标检测方法,属于图像处理和计算机视觉技术领域。该检测方法包括:采集图像构建数据集,并将数据集划分为训练集和测试集;构建改进的YOLOV5网络模型,其主干网络用shufflenetV2代替,添加坐标注意力机制,改进特征提取结构:加深特征金字塔FPN,增加浅层特征重用,删除低分辨率目标检测层,避免无效计算;使用训练集数据对改进的YOLOV5网络模型进行训练,得到小目标检测模型。本发明通过增加浅层特征重用及引入坐标注意力机制,提升了检测精度,通过缩减模型体积,降低网络参数
一种基于特征增强的复杂场景下小目标检测方法.pdf
本发明属于计算机视觉和目标检测领域,具体涉及一种基于特征增强的复杂场景下小目标检测方法。本发明的技术方案是:首先提出Cutout‑DA数据增强方法,生成新的遮挡数据扩充至VisDrone2021数据集中,然后设计多尺度融合的特征增强路径聚合网络MSFE‑PANet,通过集成注意机制、特征融合以及针对小目标的网络预测尺度策略,获取到更丰富、细致的语义信息特征和空间信息特征,设计预测框排斥损失函数RB_Loss,最后训练模型。本发明可以增强深层特征图的强定位信息与浅层特征图的强语义信息相互融合,帮助网络在复杂
一种面向交通标志检测的小目标增强优化方法.pdf
本发明公开了一种面向交通标志检测的小目标增强优化方法。本发明方法包含两部分的内容:采用基于优先度的小目标增强的策略进行数据增强。针对以往小目标增强无视各类型目标分布差异统一增强导致效果不佳的问题,采用基于优先度的小目标增强的策略进行数据增强,对小目标数据集进行针对性的增强。采用最优锚框宽高聚类优化训练数据。针对模型获取正样本时只关注比较大的样本、忽略小目标的问题,以及单纯以目标宽高进行聚类获取锚框初始值导致训练数据不合理的问题。采用最优锚框宽高聚类配合增强数据集优化训练数据。通过本发明提出的方法,最终可以
基于弱特征增强的轻量化小目标检测方法研究.docx
基于弱特征增强的轻量化小目标检测方法研究摘要:随着物联网、智能家居等应用的普及,对于小目标检测也越来越重要。但是,目前的目标检测算法大多数针对大尺寸物体进行优化,对于小目标检测效果较差,识别率低且易受光影、角度等影响。因此,本文提出了一种基于弱特征增强的轻量化小目标检测方法,该方法能够有效提高小目标检测的准确率和稳定性。本文采用了深度学习算法与弱特征抽取算法相结合的方法,将弱特征与深度学习算法相结合,提高小目标识别率。关键词:小目标检测;深度学习;弱特征;特征增强;轻量化1.引言随着科技的发展,物联网、智